【摘要】平面向量數(shù)量積的坐標(biāo)表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來(lái),是全章重點(diǎn)之一。:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念
2025-11-26 06:37
【摘要】§6平面向量數(shù)量積的坐標(biāo)表示,)1.問(wèn)題導(dǎo)航(1)向量數(shù)量積的坐標(biāo)公式適用于任何兩個(gè)向量嗎?(2)向量有幾種表示方法?由于表示方法的不同,計(jì)算數(shù)量積的方法有什么不同?(3)由向量夾角余弦值的計(jì)算公式可知,兩個(gè)向量的數(shù)量積和兩個(gè)向量夾角的余弦值有什么關(guān)系?2.例題導(dǎo)讀
2025-11-19 00:13
【摘要】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第2章平面向量本章知識(shí)整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建平面向量的線性運(yùn)算e1,e2是不共線的向量,已知向量AB→=2e1+ke2,CB→=e1+3e2,CD→=2e1-e2,若A、B、D三點(diǎn)共線,求k的值.分析:因?yàn)锳、B、D三點(diǎn)共線
2025-11-26 03:23
【摘要】第三章三角函數(shù)恒等變換2一、三角的恒等變換課型A例1.已知3πtan2π42???????????,則22cossin12π2cos4????????????的值為_____________.12?例2.已知sinαcosα=81,且
2025-11-10 20:37
【摘要】2021-2021學(xué)年高中數(shù)學(xué)同步訓(xùn)練:第2章平面向量章末檢測(cè)(蘇教版必修4)一、填空題1.與向量a=(1,3)的夾角為30°的單位向量是________________.2.已知三個(gè)力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同時(shí)作用于某物體上一點(diǎn),為使物體保持平衡,現(xiàn)加上一個(gè)
2025-11-26 03:25
【摘要】一、選擇題1.(2021·衡水高一檢測(cè))設(shè)e1,e2是平面內(nèi)所有向量的一組基底,則下列四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2【解析】B中,∵6e1-8e2=2(3e1-4e
2025-11-18 23:46
【摘要】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問(wèn)題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問(wèn)題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:若O為△ABC重心,則=.問(wèn)題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
2025-11-10 20:38
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過(guò)程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來(lái)表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問(wèn)題難點(diǎn)同上教學(xué)設(shè)
【摘要】平面向量數(shù)量積的物理背景及其含義教學(xué)目的1、掌握平面向量數(shù)量積的物理背景;2、掌握平面向量數(shù)量積的定義及幾何意義;3、理解一個(gè)向量在另一個(gè)向量方向上的投影的概念。教學(xué)難點(diǎn)及突破方法平面向量數(shù)量積概念的理解。教師利用物理常識(shí)創(chuàng)設(shè)情景引入概念進(jìn)行理解,配置典型性題組,由淺入深,
2025-08-05 01:00
【摘要】專題八平面向量一、復(fù)習(xí)要求一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長(zhǎng)度相等且方向相同的
2025-04-17 12:54
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2025-11-10 19:09
【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問(wèn)題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個(gè)向量a=(x1,y