【摘要】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)1.了解周期函數(shù)與最小正周期的意義.(難點、易錯點)2.了解三角函數(shù)的周期性和奇偶性.(重點)3.會求函數(shù)的周期和判斷三角函數(shù)的奇偶性.(重點)1.函數(shù)的周期性(1)對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當
2024-11-19 18:02
【摘要】余弦函數(shù)的性質(zhì)說課稿范文 一:教材分析: 1、教材的地位與作用:本節(jié)課要講的是正、余弦函數(shù)的性質(zhì),它是歷年高考的重點內(nèi)容之一,在高考中常以選擇題、填空題的形式出現(xiàn)。有時與其它三角變換、函數(shù)的一般性...
2024-12-03 22:18
【摘要】正弦函數(shù)的性質(zhì)楊政奎?說教材?說教學目標?說教學方法?說教學過程返回退出說教學目標
2024-11-10 01:03
【摘要】三角函數(shù)的圖象與性質(zhì)、余弦函數(shù)的圖象x,對應的正弦值(sinx)、余弦值(cosx)是否存在?惟一?問題提出t57301p2???????,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應從哪個方面
2024-11-12 01:35
【摘要】正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)1.復習:讓學生口述函數(shù)的定義。2.引入:結(jié)合我們剛學過的三角比,就以正弦(或余弦)為例,對每一個給定的角和正弦值(或)之間是否也存在一種函數(shù)關系?若存在,請對這種函數(shù)關系下一個定義,若不存在請說明理由。3.討論:對自變量的取值類型和范圍進行討論,并給出相應的正弦函數(shù)和余弦函數(shù)的記號。OxP
2024-11-17 14:50
【摘要】已知條件定理選用一般解法一邊和和二角(如a,B,C)正弦定理由A+B+C=180°求角A,由正弦定理求出b與c兩邊和夾角(如a,b,C)余弦定理由余弦定理求出第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180°求出另一角.兩邊和其中一邊的對角(如a,b,A)
2024-11-10 03:18
【摘要】任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)的概念教學設計基本信息名稱、余弦函數(shù)和正切函數(shù)的概念執(zhí)教者田國綱課時一課時所屬教材目錄中等職業(yè)教育課程改革國家規(guī)劃新教材(高等教育出版社)數(shù)學(基礎模塊上冊)P102《任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)的概念》教材分析本節(jié)是學生在初中學習了銳角三角函數(shù),高中學習了函數(shù)的對應定義,以及冪、指、對函數(shù)后,將銳角三角
2025-06-25 03:42
【摘要】課件制作:高安二中熊新成課題:什么是∠A的正弦、什么是∠A的余弦,怎樣表示?ACBsinA=cosA=2.30°角的余角是A的余角是__60°(90-A)°、45o、60o角的正、余弦值分別為多少?sin30
2024-11-09 06:03
【摘要】、余弦函數(shù)、正切函數(shù)第5章三角函數(shù)創(chuàng)設情景興趣導入銳角三角函數(shù)的定義是什么?BCAabc?在RtABC?中,sin??cos??tan??.創(chuàng)設情景興趣導入a
2024-11-17 20:11
【摘要】§正、余弦函數(shù)圖象和性質(zhì)(一)我們的目標1、理解正、預先函數(shù)圖象的來由2、掌握正、余弦函數(shù)性質(zhì)(定義域、值域、對應法則、單調(diào)性、奇偶性、周期性)的圖象一、正弦函數(shù)xysin?、描點法1、五點法2的性質(zhì)二、正弦函數(shù)xysin?、定義域1、值域2Rx???
2025-08-16 01:07
【摘要】2020/12/25余弦函數(shù)圖象與性質(zhì)2020/12/25yxo1-12?23?2????2如何作出正弦函數(shù)的圖象(在精確度要求不太高時)?(0,0)(,1)2?(?,0)(,-1)23?(2?,0)五點畫圖法五點法——(0,0)(,1
2024-11-18 12:10
【摘要】數(shù)學:正弦函數(shù)的圖像和性質(zhì)(第二課時)課件ppt(新人教A版必修四)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx
2024-11-09 01:54