freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)111正弦定理教案新人教a版必修5大全(完整版)

  

【正文】 =b=ccab===2R sinAsinBsinC簡(jiǎn)單變形; 基本應(yīng)用:已知三角形的任意兩角及其一邊可以求其他邊;:① 例1:在DABC中,已知A=450,B=600,a=10cm,解三角形.② 例2:DABC中,c=6,A=450,a=2,求b和B,:已知兩邊和其中一邊的對(duì)角解三角形時(shí),如何判斷解的數(shù)量?思考后見(jiàn)(P8P9):正弦定理的探索過(guò)程;正弦定理的兩類(lèi)應(yīng)用;已知兩邊及一邊對(duì)角的討論.第二篇:2014年高中數(shù)學(xué) (二)新人教A版必修5證明猜想得出定理運(yùn)用定理解決問(wèn)題3通過(guò)本節(jié)課的學(xué)習(xí),結(jié)合教學(xué)目標(biāo),從知識(shí)、能力、情感三個(gè)方面預(yù)測(cè)可能會(huì)出現(xiàn)的結(jié)果:學(xué)生對(duì)于正弦定理的發(fā)現(xiàn)、證明正弦定理的幾何法、正弦定理的簡(jiǎn)單應(yīng)用,能夠很輕松地掌握;在證明正弦定理的向量法方面,估計(jì)有少部分學(xué)生還會(huì)有一定的困惑,需要在以后的教學(xué)中進(jìn)一步培養(yǎng)應(yīng)用向量工具的意識(shí)。第一篇:高中數(shù)學(xué)《 正弦定理》教案 新人教A版必修5 (大全) 正弦定理●教學(xué)目標(biāo) 知識(shí)與技能:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類(lèi)基本問(wèn)題。學(xué)生的基本數(shù)學(xué)思維能力得到一定的提高,能領(lǐng)悟一些基本的數(shù)學(xué)思想方法;但由于學(xué)生還沒(méi)有形成完整、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維習(xí)慣,對(duì)問(wèn)題的認(rèn)識(shí)會(huì)不周全,良好的數(shù)學(xué)素養(yǎng)的形成有待于進(jìn)一步提高。突破此難點(diǎn)的關(guān)鍵是引導(dǎo)學(xué)生通過(guò)向量的數(shù)量積把三角形的邊長(zhǎng)和內(nèi)角的三角函數(shù)聯(lián)系起來(lái)。生:有。在教學(xué)過(guò)程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對(duì)一般三角形進(jìn)行推導(dǎo)證明,并引導(dǎo)學(xué)生分析正弦定理可以解決兩類(lèi)關(guān)于解三角形的問(wèn)題:(1)知兩角一邊,解三角形;(2)知兩邊和一邊對(duì)角,解三角形。問(wèn):如何能夠?qū)崿F(xiàn)不上塔頂而知塔高,不過(guò)河而知河寬?二、觀察特例,提出猜想[討論](1)認(rèn)識(shí)三角形中的6個(gè)元素,并復(fù)習(xí)“大角對(duì)大邊,小角對(duì)小邊”知識(shí)。已知三角形的幾個(gè)元素,求其他元素的過(guò)程叫作解三角形。)(1)A=45,C=30,c=10cm,(2)a=20,b=11,B=30練習(xí)2:[合作與探究]:某人站在靈山江岸邊樟樹(shù)B處,發(fā)現(xiàn)對(duì)岸發(fā)電廠A處有一棵大樹(shù),如何求出A、B兩點(diǎn)間的距離?(如圖)ooo六、回顧課堂,嘗試小結(jié)①本節(jié)課學(xué)習(xí)了一個(gè)什么定理?②該定理使用時(shí)至少需要幾個(gè)條件?七、學(xué)有所成,課外續(xù)學(xué)1、2題:在DABC中,asinA=bsinB=csinC=k(ko),這個(gè)k與DABC的外接圓半徑R有什么關(guān)系?3八、板書(shū)設(shè)計(jì)第五篇:高中數(shù)學(xué)必修5第一章正弦定理1.1.1正弦定理(一)教學(xué)目標(biāo)1.知識(shí)與技能:通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類(lèi)基本問(wèn)題。思考:208。ab[例題分析]例1.在DABC中,已知A=,B=,a=,解三角形。1160.⑴ 當(dāng)B187。a+b+csinA+sinB+sinCabc分析:可通過(guò)設(shè)一參數(shù)k(k0)使===k,sinAsinBsinCabca+b+c證明出 ===sinAsinBsinCsinA+sinB+sinCabc解:設(shè)===k(ko)sinAsinBsinC則有a=ksinA,b=ksinB,c=ksinCa+b+cksinA+ksinB+ksinC從而==ksinA+sinB+sinCsinA+sinB+sinC例3.已知DABC中,208。[補(bǔ)充練習(xí)]已知DABC中,sinA:sinB:sinC=1:2:3,求a:b:c(答案:1:2:3)[課堂小結(jié)](由學(xué)生歸納總結(jié))(1)定理的表示形式:asinAsinBsinC或a=ksinA,b=ksinB,c=ksinC(k0)(2)正弦定理的應(yīng)用范圍:①已知兩角和任一邊,求其它兩邊及一角; ②已知兩邊和其中一邊對(duì)角,求另一邊的對(duì)角。1800(400+640)=760,asinC20sin760c==187。(cm);根據(jù)正弦定理,==187。C的大小的增大而增大。3.情態(tài)與價(jià)值:培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力;培養(yǎng)學(xué)生合情推
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1