freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計(jì)(完整版)

  

【正文】 長(zhǎng)為8,那么30角所對(duì)邊的長(zhǎng)是2.在△ABC中,oo(1)已知A=75,B=45,c=,則a=,b=oooo(2)已知A=30,B=120,b=12,則a=,c=oo3.在△ABC中,b=oc=C=60,則A= ____________ o4.在△ABC中,b=3,c=B=30,則a=_____________ 5.在△ABC中,b=2asinB,則B+C=________________(五)小結(jié)(1)在這節(jié)課中,學(xué)習(xí)了哪些知識(shí)?正弦定理及其發(fā)現(xiàn)和證明,正弦定理的初步應(yīng)用(2)正弦定理如何表述? a=b=csinAsinBsinC(3)表達(dá)式反映了什么?指出了任意三角形中,各邊與對(duì)應(yīng)角的正弦之間的一個(gè)關(guān)系式學(xué)案1.1正弦定理班級(jí)姓名學(xué)號(hào)一、學(xué)習(xí)目標(biāo)(1)正弦定理的發(fā)現(xiàn);(2)證明正弦定理的幾何法和向量法;(3)正弦定理的簡(jiǎn)單應(yīng)用。解析:先通過(guò)直角三角形找出三邊與三角的關(guān)系,再依次對(duì)銳角三角形與鈍角三角形進(jìn)行探討,歸納總結(jié)出正弦定理,并能進(jìn)行簡(jiǎn)單的應(yīng)用。證明正弦定理的方法很多,有比這種外接圓的方法簡(jiǎn)單的證明方法,比如向量法和課本上通過(guò)高的方法,但是唯有這種方法能夠比較簡(jiǎn)單的得到比值是2R這樣的結(jié)論,當(dāng)然中間的過(guò)程也不算簡(jiǎn)單,要構(gòu)造直角三角形,要將角轉(zhuǎn)化,可是這些對(duì)于學(xué)生思維水平的提高還是很有幫助的,也能使得學(xué)生更加清楚數(shù)學(xué)知識(shí)發(fā)生發(fā)展的過(guò)程,將未知問(wèn)題轉(zhuǎn)化為自己可以動(dòng)手操作的問(wèn)題,我認(rèn)為這一點(diǎn)意義還是很大。練習(xí):已知在△ABC中,A=450,=2,解此三角形。定理的變式:(1)(邊化角)在上的單調(diào)性進(jìn)行分(2)(3)(角化邊)(4)(二)正弦定理的應(yīng)用 解三角形:稱為三角形的元素,已知某些元素求其他元素的過(guò)程。連外接圓的一條直徑BD,則所以因而所以在與學(xué)生共同探究的過(guò)程中,可以設(shè)置下面的問(wèn)題:(1)受直角三角形的啟發(fā),應(yīng)該會(huì)用到銳角三角函數(shù),所以一定要構(gòu)造直角三角形,在外接圓已經(jīng)做出的情況下,如何去構(gòu)造直角三角形?(2)如何轉(zhuǎn)化角?即為什么若△ABC是鈍角三角形,則外接圓圓心在三角形外部。定理是一種定量的研究。學(xué)生情況分析:一方面,正弦定理和余弦定理作為解三角形的理論基礎(chǔ),它們形式簡(jiǎn)潔漂亮,學(xué)生易于接受。探究證明定理的方法,理解正弦定理是對(duì)任意三角形中“大邊對(duì)大角、小邊對(duì)小角”的量化研究,從中體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程。正弦定理的證明方法有很多,比如平面幾何法和向量法,也是簡(jiǎn)單的方法,可是它們都無(wú)法輕易得出比值是2R這一結(jié)論,因而我在教學(xué)中采用外接圓的方法,將三角形內(nèi)角轉(zhuǎn)化成直角三角形中的銳角,再利用銳角三角函數(shù)得出定理,過(guò)程稍稍復(fù)雜,可對(duì)于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力還是有幫助的。綜上,我將本節(jié)課的教學(xué)難點(diǎn)定為:探究定理證明的方法,比值等于2R的由來(lái)。由此得到 設(shè)計(jì)意圖:這個(gè)問(wèn)題的解答很關(guān)鍵,起到承上啟下的作用。由正(1)若A、B都是銳角,則。問(wèn)題4:對(duì)于例2,思考,為什么例1只有一解而例2有可能多解?,可能出現(xiàn)兩解,如何取舍?進(jìn)一步設(shè)計(jì)意圖:用正弦定理的時(shí)候很容易出錯(cuò)的就是多解的情形,通過(guò)此例讓學(xué)生探索取舍的辦法。本節(jié)課的思想方法:證明正弦定理時(shí),先從直角三角形中得到結(jié)論,然后推廣到一般三角形中,這種從特殊到一般的研究方法是數(shù)學(xué)中常用的思想方法。正弦定理是求解任意三角形的基礎(chǔ),又是學(xué)生了解向量的工具性和知識(shí)間的相互聯(lián)系的的開(kāi)端,對(duì)進(jìn)一步學(xué)習(xí)任意三角形的求解、體會(huì)事物是相互聯(lián)系的辨證思想均起著舉足輕重的作用。-A-C= 180186?!鰽BC中,若c=2,C=60176。情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。求需要建多長(zhǎng)的索道?可將問(wèn)題數(shù)學(xué)符號(hào)化,抽象成數(shù)學(xué)圖形。于是,從以上的討論和探究,得出定理:正弦定理(laws of sines)在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即asinA==siBnbcsCin分析此關(guān)系式的形式和結(jié)構(gòu),一方面便于學(xué)生理解和識(shí)記,另一方面,讓學(xué)生去感受數(shù)學(xué)的間接美和對(duì)稱美。解三角形(角精確到10,邊長(zhǎng)精確到1cm)。接著,課堂練習(xí),讓學(xué)習(xí)自己運(yùn)用正弦定理解題。形成命題域、命題系開(kāi)始我們運(yùn)用分類討論平面幾何三角形的情況證明了正弦定理。六、課堂小結(jié)與反思這節(jié)課我們學(xué)到了什么?(正弦定理的形式?正弦定理的適應(yīng)范圍?正弦定理的證明方法?)我們從直角、銳角、鈍角三類三角形出發(fā),運(yùn)用分類的方法通過(guò)猜想、證明得到了正弦定理asinA=bsinB=csinC,它揭示了任意三角形邊和其所對(duì)的角的正弦值的關(guān)系。過(guò)程與方法:讓學(xué)生從實(shí)際問(wèn)題出發(fā),結(jié)合初中學(xué)習(xí)過(guò)的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理;讓學(xué)生在應(yīng)用定理解決問(wèn)題的過(guò)程中更深入地理解定理及其作用。本設(shè)計(jì)展示了一個(gè)先從特殊的直角三角形中正弦的定義出發(fā)探索208。本節(jié)課是“正弦定理”教學(xué)的第一課時(shí),其主要任務(wù)是引入并證明正弦定理,在課型上屬于“定理教學(xué)課”。四、教學(xué)目標(biāo)知識(shí)與技能:通過(guò)對(duì)任意三角形的邊與其對(duì)角的關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法。師:誰(shuí)能幫大家講解,應(yīng)該怎樣解決上述問(wèn)題?大家經(jīng)過(guò)討論達(dá)成如下共識(shí):要回答問(wèn)題1,需要解決問(wèn)題2,要解決問(wèn)題2,需要先解決問(wèn)題3和4,問(wèn)題3用直角三角形知識(shí)可解,所以重點(diǎn)是解決問(wèn)A圖 1BC生活”的思想意識(shí),同時(shí)情境問(wèn)題的圖形及解題思路均為研究正弦定理做鋪墊。EAF=45176。師:圖3的情形能否轉(zhuǎn)化成直角三角形來(lái)解呢?【設(shè)計(jì)意圖】通過(guò)教師的問(wèn)題引導(dǎo),啟發(fā)學(xué)生將問(wèn)題進(jìn)行轉(zhuǎn)化,培養(yǎng)學(xué)生的化歸思想,同時(shí)為下一步用特例作為突破口來(lái)研究正弦定理以及用作高的方法來(lái)證明正弦定理做好鋪墊。5=3210|v|=|AG|+|GE|=師:很好!采取分割的方法,將一般三角形化為兩個(gè)直角三角形求解?!驹O(shè)計(jì)意圖】教師參與學(xué)生之間的研究,增進(jìn)師生之間的思維與情感的交流,并通過(guò)教師的指導(dǎo)與觀察,及時(shí)掌握學(xué)生研究的情況,為展示學(xué)生的研究結(jié)論做準(zhǔn)備;同時(shí)通過(guò)展示研究結(jié)論,強(qiáng)化學(xué)生學(xué)習(xí)的動(dòng)機(jī),增進(jìn)學(xué)生的成功感及學(xué)習(xí)的信心。邊演示邊引導(dǎo)學(xué)生觀察三角形形狀的變化與三個(gè)比值的變化情況。(2)點(diǎn)明課題:正弦定理(3)正弦定理的理論探究師:既然是定理,則需要證明,請(qǐng)同學(xué)們與小組共同探究正弦定理的證明。這是一個(gè)簡(jiǎn)捷的證明方法!【設(shè)計(jì)意圖】點(diǎn)明此證法的實(shí)質(zhì)是找到一個(gè)可以作為證明基礎(chǔ)的等量關(guān)系,為后續(xù)兩種方法的提出做鋪墊,同時(shí)適時(shí)對(duì)學(xué)生作出合情的評(píng)價(jià)。BAC=c12casin208。ACB=208。ACBccbDC圖 7 三角形外接圓【設(shè)計(jì)意圖】在證明正弦定理的同時(shí),將兩邊及其夾角的三角形面積公式 及asinA=bsinB=csinC=2r一并牽出,使知識(shí)的產(chǎn)生自然合理。由向量數(shù)量積的幾何意生16:我還有一種證法uuuruuur證法五:如圖9,作AD^BC,則AB與AC在uuuruuuruuuruuuruuurAD方向上的投影相等,即ABAD=ACADuuuruuuruuuruuur\|AB||AD|cos(90176。(五)作業(yè)回顧本節(jié)課的整個(gè)研究過(guò)程,體會(huì)知識(shí)的發(fā)生過(guò)程;思考:證法五與證法一有何聯(lián)系?思考:能否借助向量的坐標(biāo)的方法證明正弦定理?當(dāng)三角形為鈍角三角形時(shí),證明正弦定理。七、教學(xué)反思為了使學(xué)生真正成為提出問(wèn)題和解決問(wèn)題的主體,成為知識(shí)的“發(fā)現(xiàn)者”和“創(chuàng)造者”,使教學(xué)過(guò)程成為學(xué)生主動(dòng)獲取知識(shí)、發(fā)展能力、體驗(yàn)數(shù)學(xué)的過(guò)程。C)C\csinB=bsin 師:請(qǐng)你到講臺(tái)來(lái)給大家講一講。生13:利用向量的數(shù)量積運(yùn)算可將向量關(guān)系轉(zhuǎn)化成數(shù)量關(guān)系。ADBab==2r同理可證:sin208。ACB==bsin208。在教師的建議下,學(xué)生分別利用這兩種關(guān)系作為基礎(chǔ)又得出了如下兩種證法:證法二:如圖6,設(shè)AD、BE、CF分別是DABC的三條高?!驹O(shè)計(jì)意圖】通過(guò)分析,確定探究方案?!驹O(shè)計(jì)意圖】通過(guò)《幾何畫(huà)板》軟件的演示,使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。師:有沒(méi)有其它的研究結(jié)論?(根據(jù)實(shí)際情況,引導(dǎo)學(xué)生進(jìn)行分析判斷結(jié)論正確與否,或留課后進(jìn)一步深
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1