【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-14 05:20
【摘要】某種零件加工時,需要把兩個半圓環(huán)形拼成一個完整的圓環(huán),并確定這個圓環(huán)的圓心,在加工時首先要檢測兩個半圓環(huán)形是否合格.檢測方法如圖1所示,把直角鋼尺的直角頂點放在圓周上,如果在移動鋼尺的過程中,鋼尺的兩個直角邊始終和A,B兩點接觸,并且直角頂點一直在圓周上,就說明這個半圓環(huán)形是合格的.把兩個合格的半圓環(huán)形拼接在一起就形成了如圖2所示的一個圓環(huán).
2024-11-17 13:34
【摘要】民樂縣第二中學王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______。⌒260o在射門游戲中,球員射中球門的難易與他所處的位
2024-12-07 16:28
【摘要】圓周角和圓心角的關(guān)系回顧與反思圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半.推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等推論2:直徑所對的圓周角是直角;90度的圓周角所對的弦是直徑。推論3:圓內(nèi)接四邊形的對角互補。推論4:圓內(nèi)接四
2024-11-26 19:18
【摘要】圓周角和圓心角的關(guān)系(1)大興學校卿麗萍?.OBC答:頂點在圓心的角叫圓心角..OBC圓心角的度數(shù)和它所對的弧的度數(shù)的關(guān)系我們把頂點在圓心的周角等分成360份時,每一份的圓心角是1°的角。在同圓或等圓中,圓心角的度數(shù)和它所對的弧的度數(shù)相
2024-12-07 15:14
【摘要】北京師范大學出版社九年級|下冊第三章圓4圓周角和圓心角的關(guān)系【創(chuàng)設(shè)情境】問題1在圓中,滿足什么條件的角是圓心角?頂點在圓心的角叫做圓心角.問題2在同圓或等圓中,弧、弦、圓心角乊間有什么關(guān)系?在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,如果兩條弧相等,
2025-06-14 12:05
【摘要】4圓周角和圓心角的關(guān)系第1課時【基礎(chǔ)梳理】頂點在_____,兩邊分別與圓_______________的角.圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的_____.圓上還有另一個交點一半_____或_____所對的圓周角相等.同弧等弧【自我診斷】.().(
2025-06-12 13:43
【摘要】課題:圓周角和圓心角的關(guān)系課型:新授課年級:九年級教學目標:1.掌握圓周角定理的兩個推論,會熟練運用這兩個推論解決相關(guān)問題。2.掌握圓的內(nèi)接四邊形的概念及性質(zhì),并能加以熟練運用。3.通過實際問題的解決,體會建立數(shù)學模型解決實際問題的過程,養(yǎng)成用數(shù)學的思維方式思考問題的習慣.教學重點與難點:重點:
2024-12-09 12:44
2025-06-14 06:38
【摘要】課題:3.4.1圓周角和圓心角的關(guān)系課型:新授課年級:九年級教學目標:1.理解圓周角定義,掌握圓周角定理.會熟練運用定理解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力.3.在學生自主探索定理的過程中,經(jīng)歷猜想、推理、驗證等環(huán)節(jié),獲得正確學習方式.培養(yǎng)學生的探索精神和解決問題的能力教學重難點:重
【摘要】4圓周角和圓心角的關(guān)系第三章圓課堂達標素養(yǎng)提升第三章圓第2課時圓周角定理的推論課堂達標一、選擇題第2課時圓周角定理的推論1.如圖K-23-1所示,AB是⊙O的直徑,弦DC與AB相交于點E,若∠ACD=50°,則∠DAB的度數(shù)是
2025-06-12 12:07
2025-06-14 12:04