【摘要】第二章圓一石激起千層浪奧運五環(huán)樂在其中如圖是國際奧林匹克運動會旗的標(biāo)志圖案.圓是到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA·OA圓也可以看成是一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心
2024-11-25 21:58
【摘要】圓的對稱性檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?惠山區(qū)模擬)已知,AB是⊙O的弦,且OA=AB,則∠AOB的度數(shù)為()A.30°B.45°C.60°D.90°
2024-11-14 23:15
【摘要】圓的對稱性第一課時同學(xué)們,現(xiàn)在老師需要一個較大的圓,你有什么辦法幫老師畫出來?圓的定義1:在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.記作“⊙O”,讀作“圓O”.想一想:(1)一個班有
2024-11-17 00:27
【摘要】ABCDOFEG圓心角、弧、弦、弦心距之間的關(guān)系圓心角、弧、弦、弦心距之間的關(guān)系圓是中心對稱圖形O對稱中心為圓心我們已經(jīng)學(xué)過的圖形中,有哪些既是軸對稱圖形,又是中心對稱圖形?圓是軸對稱圖形對稱軸是任意一條過圓心的直線圓心角、弧、弦、弦心距之間的關(guān)系
2024-11-30 02:41
【摘要】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進(jìn)行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實驗--觀察--猜想——合作交流——證明”的途徑,進(jìn)一步培養(yǎng)學(xué)生的動手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-05 15:48
【摘要】初中數(shù)學(xué)九年級上冊(蘇科版)圓的對稱性(一)1、什么是中心對稱圖形?舉例說明把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形。平行四邊形、矩形、菱形、正方形復(fù)習(xí)回憶2、圓是中心對稱圖形,圓心是它的對稱中心。1.在兩張透明紙片上,分別作半
2024-11-30 03:57
【摘要】.圓的對稱性(2)復(fù)習(xí)如圖,若AB=CD則()若OABCD⌒⌒AB=
2024-12-08 02:56
【摘要】北師大版九年級下冊第三章《圓》(第1課時)圓的對稱性?圓是軸對稱圖形嗎?想一想駛向勝利的彼岸如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的??圓是中心對稱圖形嗎?如果是,它的對稱中心是什么?你能找到多少條對稱軸?你又是
2024-12-07 15:23
【摘要】《第7節(jié)自然界中的氧循環(huán)和碳循環(huán)》習(xí)題1、丁烷燃燒時火苗高而亮,其燃燒的化學(xué)方程式為2X+13O2=8CO2+10H2O,則推知:(1)丁烷含_________元素,化學(xué)式為___________;(2)產(chǎn)物CO2在大氣中含量過多時,會導(dǎo)致__________(填一環(huán)境問題的名稱),綠色植物的________可以緩解CO2的增長;
2024-11-28 17:43
【摘要】《2人體生命活動的神經(jīng)調(diào)節(jié)》習(xí)題一、選擇題1、靜息時和產(chǎn)生興奮后,神經(jīng)纖維細(xì)胞膜內(nèi)外電位的變化分別是()。A、內(nèi)正外負(fù)、內(nèi)負(fù)外正B、內(nèi)負(fù)外正、內(nèi)正外負(fù)C、內(nèi)負(fù)外正、內(nèi)負(fù)外正D、內(nèi)正外負(fù)、內(nèi)正外負(fù)2、下列各項中,不屬于反射活動的是()。A、由于氣溫高而出汗B、由于氣溫低,皮膚血管收縮C、在
2024-11-28 10:26
【摘要】第2章圓圓的對稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA圓也可以看成是平面內(nèi)一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心.以點O為圓心的圓叫作圓O,記作⊙
2024-12-08 02:59
【摘要】圓的對稱性教學(xué)過程(一)明確目標(biāo)同學(xué)們請觀察老師手中的圓形圖片.AB為⊙O的直徑.①我把⊙O沿著AB折疊,兩旁部分互相重合,我們知道這個圓是一個軸對移圖形.②若把⊙O沿著圓心O旋轉(zhuǎn)180°時;兩旁部分互相重合,這時我們可以發(fā)現(xiàn)圓又是一個中心對稱圖形.由學(xué)生總結(jié)圓不僅是軸對稱圖形,圓也是中心對稱圖形.若一個
2024-11-19 20:34