【摘要】圓錐曲線與方程第二章§2拋物線拋物線的簡單性質(zhì)第二章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)、對稱性、頂點、焦點、準線等幾何性質(zhì).2.會利用拋物線的性質(zhì)解決一些簡單的拋物線問題.拋物線y2=2px(p0)的簡單幾何性質(zhì)
2024-11-16 23:25
【摘要】【課堂新坐標】(教師用書)2020-2020學(xué)年高中數(shù)學(xué)雙曲線及其標準方程課后知能檢測新人教B版選修1-1一、選擇題1.(2020·臺州高二檢測)設(shè)動點P到A(-5,0)的距離與它到B(5,0)距離的差等于6,則P點的軌跡方程是()29-y216=129-x216
2024-11-19 10:30
【摘要】高二數(shù)學(xué)備課組的絕對值平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差等于常數(shù)的點的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【摘要】導(dǎo)數(shù)及其應(yīng)用第一章一.創(chuàng)設(shè)情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四類問題的處理直接相關(guān):一、已知物體運動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;二、求曲線的切線;三、求已知函數(shù)的最大值與最小值
2024-11-17 11:59
【摘要】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【摘要】2020/12/24導(dǎo)數(shù)的幾何意義311..2020/12/24?????????,.,,''的幾何意義是什么呢導(dǎo)數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導(dǎo)數(shù)我們知道0000xfxxxfxxxfxf??2020/12/24P1P2P
【摘要】下列語句的是陳述句嗎?你能判斷它們的真假嗎?(1)125;(2)3是12的約數(shù);(3);(4)對頂角相等;(5)3能被2整除;(6)若x2=1,則x=1.語句都是陳述句,并且可以判斷真假。命題的概念一般地,在數(shù)學(xué)中,我們把用語言、符號或式子表達的
2024-11-18 12:16
【摘要】本專題欄目開關(guān)填一填研一研練一練2.3.1拋物線及其標準方程【學(xué)習(xí)要求】1.掌握拋物線的定義及焦點、準線的概念.2.會求簡單的拋物線的方程.【學(xué)法指導(dǎo)】通過拋物線的形成過程,得出拋物線定義,建系得出拋物線標準方程.通過拋物線及其標準方程的應(yīng)用,體會拋物線在刻畫現(xiàn)實世界和解
2025-01-13 21:01
【摘要】§橢圓的簡單幾何性質(zhì)課時安排5課時從容說課本節(jié)主要是通過對橢圓的標準方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學(xué)習(xí)解析幾何以來的第一次,因此在教學(xué)中,不僅要注意對研究結(jié)果的理解和應(yīng)用,而且應(yīng)注意對研究方法的學(xué)習(xí).由于學(xué)生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點比較熟悉,所以在學(xué)習(xí)由
2024-12-08 22:39
【摘要】拋物線及其標準方程蔣風(fēng)軍泗水一中2021年11月6日人教A版高中數(shù)學(xué)選修2-1思考MHFElm如圖,點F是定點,是不經(jīng)過點F的定直線。H是上任意一點,經(jīng)過點H作,線段FH的垂直平分線m交MH于點M。拖動點H,觀察點M的軌跡。你能發(fā)現(xiàn)
2025-05-09 00:38
【摘要】制作人大同縣一中賀森一、復(fù)習(xí)橢圓、雙曲線的第二定義是什么?當(dāng)點M與一個定點的距離和它到一條定直線的距離比是常數(shù)e時),10(???eace這個點的軌跡是橢圓。),1(??eace這個點的軌跡是雙曲線。定義:平面內(nèi)與一個定點F和一條定直線l的距離相等的點
2024-08-10 17:39
【摘要】橢圓的標準方程橢圓的定義?平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。?這兩個定點F1、F2叫做橢圓的焦點,兩個焦點間的距離叫做橢圓的焦距。你能根據(jù)橢圓的定義畫一個橢圓嗎?設(shè)橢圓的兩個焦點為F1,F(xiàn)2,它們之間的距離為2c,橢圓上任意一點與F1、F2的距離之
2024-11-18 15:25