【摘要】第一章一、選擇題1.下列語句中不是命題的是()A.3≥6B.二次函數(shù)不是偶函數(shù)C.x>0D.對于x∈R,總有x2>0[答案]C[解析]C選項x的范圍未給出,不能判斷真假.2.下列命題中,假命題的個數(shù)為()①2不是素數(shù);②自然數(shù)不都大于0;③
2024-11-30 22:16
【摘要】橢圓的簡單幾何性質(zhì)(二)【學(xué)習(xí)目標】1.掌握橢圓范圍、對稱性、頂點、離心率、準線方程等幾何性質(zhì);2.能利用橢圓的幾何性質(zhì)解決相關(guān)的問題.【自主檢測】1.求直線320xy???與橢圓221164xy??的交點坐標.2.已知橢圓22149xy??,一組平行直線的斜率是32,問這組直線何時與橢圓相交?
2024-12-05 06:41
【摘要】(一)【學(xué)習(xí)目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質(zhì)奎屯王新敞新疆2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關(guān)系奎屯王新敞新疆3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法奎屯王新敞新疆【自主學(xué)習(xí)】yx,2.的點?橢圓的長軸與短軸是怎樣
【摘要】§3向量的坐標表示和空間向量基本定理空間向量的標準正交分解與坐標表示課程目標學(xué)習(xí)脈絡(luò)1.理解空間向量坐標的概念,會確定一些簡單幾何體的頂點坐標.2.理解向量a在向量b上的投影的概念,了解向量的數(shù)量積的幾何意義.121.空間向量的標準正交分解與坐標表示12名
2024-11-16 23:22
【摘要】雙基達標?限時20分鐘?1.下列說法正確的是().A.若f(x)≥f(x0),則f(x0)為f(x)的極小值B.若f(x)≤f(x0),是f(x0)為f(x)的極大值C.若f(x0)為f(x)的極大值,則f(x)≤f(x0)D.以上都不對答案D2.已知函數(shù)f(x)在(a,b)上可導(dǎo)
2024-12-03 00:14
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-18 00:48
【摘要】第二章§1理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二隨著網(wǎng)絡(luò)的普及,電子郵件以其方便、快捷、易于保存、全球暢通無阻特點被廣泛應(yīng)用,使人們的交流方式得到了極大的改變,深受人們的喜愛.問題1:小明同學(xué)想給小剛同學(xué)發(fā)電子郵件,你如何用直觀、清
2024-11-18 08:08
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設(shè)i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設(shè)點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2024-11-18 13:29
【摘要】第二章§2理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準確命中目標,要考慮風(fēng)速、溫度等因素.其中風(fēng)速對射擊的精準度影響最大.如某人向正北100m遠處的目標射擊,風(fēng)速為西風(fēng)1m/s.
2024-11-17 19:02
【摘要】第一章§1理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二考點三1.線性回歸方程設(shè)樣本點為(x1,y1),(x2,y2),…,(xn,yn),線性回歸方程為y=a+bx.
2024-11-17 17:04
【摘要】-*-函數(shù)的極值首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標思維脈絡(luò)1.結(jié)合函數(shù)的圖像,正確理解函數(shù)極值的概念,了解可導(dǎo)函數(shù)有極值點的充分條件和必要條件.2.掌握利用導(dǎo)數(shù)判斷可導(dǎo)函數(shù)極值的方法,能熟練地求出已知函數(shù)的
2024-11-16 23:23
【摘要】1北師大版高中數(shù)學(xué)選修2-1第一章《常用邏輯用語》法門高中姚連省制作2含有一個量詞的命題的否定3全稱命題“對M中任意一個x,有p(x)成立”x∈M,p(x)?讀作:對任意x屬于M,有p(x)成立集合復(fù)習(xí)回顧特稱命題“存在M中的一個x,使p(x)成立”符號簡記為