【摘要】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
2025-04-16 12:51
【摘要】高二數(shù)學(xué)競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點(diǎn):1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點(diǎn),都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點(diǎn)重合時“邊形”的重心在圖
2025-08-04 18:32
【摘要】精品資源不等式與不等式組單元測試班級姓名座號成績一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個數(shù)為()A、0個
2025-03-24 05:47
【摘要】精品資源不等式與不等式組(時間:45分鐘滿分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負(fù)整數(shù)解的個
2025-06-29 17:09
【摘要】Abstract摘要微積分是高等數(shù)學(xué)中研究函數(shù)的微分、積分以及有關(guān)概念和應(yīng)用的數(shù)學(xué)分支。它是數(shù)學(xué)的一個基礎(chǔ)學(xué)科,內(nèi)容主要包括:微分、積分及其應(yīng)用。微積分是與應(yīng)用聯(lián)系著發(fā)展起來的,微積分的發(fā)展極大的推動了數(shù)學(xué)的發(fā)展。不等式是數(shù)學(xué)學(xué)科中極為重要的內(nèi)容,證明不等式的方法多種多樣,有些不等式用以前學(xué)習(xí)的方法來證明比較麻煩,其證明通常不太客易。本文回顧了幾種常用的證明不等式的初等方法,利用微分
2025-06-20 06:27
【摘要】《不等式的運(yùn)用》一、常用不等式的解法(一)基本知識點(diǎn):1.一次不等式:0,0,0axbaaa?????分三種情況求解2.二次不等式:判別式△=b2-4ac△0△=0△0方程ax2+bx+c=0的解兩不等實根x1、x2
2025-05-05 18:36
【摘要】1.如果是同類項,則、的值是-a=1的解,則a的值是3.若5x-5的值與2x-9的值互為相反數(shù),則x=_____.4.在方程=5中,用含的代數(shù)式表示為=.,則的值為、的方程的一個解,且,則=。7.8.9.
2025-08-17 14:19
【摘要】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【摘要】仁智教育不等式應(yīng)用題一、方案問題1、(2011?湘潭)九年級某班組織班團(tuán)活動,班委會準(zhǔn)備買一些獎品.班長王倩拿15元錢去商店全部用來購買鋼筆和筆記本兩種獎品,已知鋼筆2元/支,筆記本1元/本,且每樣?xùn)|西至少買一件.(1)有多少種購買方案?請列舉所有可能的結(jié)果;(2)從上述方案中任選一種方案購買,求買到的鋼筆與筆記本數(shù)量相等的概率.2、(2012資陽)為了解
2025-03-26 23:27
【摘要】均值不等式應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)『ps
2025-06-17 15:33
【摘要】......均值不等式應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(
2025-06-17 15:34
【摘要】第一篇:均值不等式的應(yīng)用策略 龍源期刊網(wǎng)://. 均值不等式的應(yīng)用策略 作者:黃秀娟 來源:《數(shù)理化學(xué)習(xí)·高三版》2013年第09期 高中階段常用的不等式主要有以下兩種形式: (1)如果a...
2024-11-05 17:46