【摘要】高一數(shù)學(xué)備課組數(shù)列通項一、常用數(shù)列通項1,2,3,4,……1,1,3,5,7,9,……3,5,7,9,11,……2,4,6,8,10,……0,2,4,6,8,……2,4,8,16,32,……1,4,9,16,25,
2025-11-01 01:03
【摘要】求數(shù)列通項貴港市高級中學(xué)數(shù)學(xué)組曾偉君na一.基礎(chǔ)知識梳理求數(shù)列通項,大體可分為以下三個模塊:1.利用公式:,;求通項.nana1(1)naa
2025-11-01 00:25
【摘要】求遞推數(shù)列通項公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2025-10-10 20:27
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第5課時數(shù)列的通項與求和要點·疑點·考點求數(shù)列的前n項和Sn,重點應(yīng)掌握以下幾種方法::如果一個數(shù)列{an},與
2025-11-01 07:56
【摘要】:——直接利用等差或等比數(shù)列的定義求通項。特征:適應(yīng)于已知數(shù)列類型(等差或者等比).例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式.變式練習(xí):,求的通項公式2.在等比數(shù)列中,,且為和的等差中項,求數(shù)列的首項、公比及前項和.求數(shù)列的通項可用公式求解。特征:
2025-06-17 07:01
【摘要】遞推數(shù)列通項公式之題根研究遞推數(shù)列通項公式之的題根研究055350河北隆堯一中焦景會電話13085848802[題根]數(shù)列滿足,,求通項公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時,數(shù)列為等
2025-06-07 22:59
【摘要】等差數(shù)列通項公式教案一教學(xué)類型新知課二教學(xué)目標(biāo) ,使學(xué)生加深對等差數(shù)列通項公式的認(rèn)識,能解決一些簡單的問題; 、項數(shù)、公差、首項,使學(xué)生進(jìn)一步體會方程思想; 3.培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的應(yīng)用意識.三教學(xué)重點,難點.2通項公式的理解與掌握;教學(xué)難點是掌握公式的推導(dǎo)過程以及對公式靈活運用.四教學(xué)用具實物投影儀,多
2025-07-25 04:58
【摘要】......待定系數(shù)法求數(shù)列通項公式本文例題的深度層層深入,前面的類型是后面的基礎(chǔ),特別是第一種類型,是學(xué)習(xí)其他幾種類型的充分依據(jù),其他的類型最終都會轉(zhuǎn)變?yōu)榈谝环N類型之后
2025-06-25 16:33
【摘要】精心整理等差數(shù)列的練習(xí)一、選擇題1.由確定的等差數(shù)列,當(dāng)時,序號等于()A.80B.100C.90D.882.已知等差數(shù)列{},,則此數(shù)列的前11項的和A.44B.33C.22D.113.若正數(shù)a,b,c成公差不為零的等差數(shù)列,則()(A)成等差數(shù)列(B)成等比數(shù)列(C)成等差數(shù)列(D)成等比數(shù)列4.設(shè)為公差不為零的等差數(shù)列的前項和,若,則()A.15
2025-08-05 11:04
【摘要】待定系數(shù)法求特殊數(shù)列的通項公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項公式,而這些問題在高考和競賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學(xué)中,針對這類問題,提供一些特殊數(shù)列求通項公式范例,幫助同學(xué)們?nèi)嬲莆者@類問題及求解的一般方法?!∏髷?shù)列的通項公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個等差數(shù)列
2025-06-25 16:50
【摘要】求數(shù)列通項公式的十種方法一、公式法例1已知數(shù)列滿足,,求數(shù)列的通項公式。解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。評注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出,進(jìn)而求出數(shù)列的通項公式。二、利用例2.若和分別表示數(shù)列和的前項和,對任意正整數(shù),.求數(shù)列的
2025-08-23 06:16
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項公式遞推數(shù)列有關(guān)概念:①遞推公式:一個數(shù)列{}na中的第n項na與它前面若干項1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2025-08-05 19:41