【正文】
,國產(chǎn)六面頂壓機(jī)具有以下優(yōu)點(diǎn):操作簡單,壓力傳遞快,工作效率高,機(jī)器噸位低,資金投入少,技術(shù)相對(duì)容易,適合我國 國情。 通常稱在高于 1GPa 的壓力下進(jìn)行的 燒結(jié)為高壓燒結(jié)。 本論文 研究內(nèi)容: SiC 陶瓷。物理氣相傳輸法 (HTPVT)是制備單晶碳化硅的常用方法,在碳化硅單晶材料研究的基礎(chǔ)上進(jìn)行了不同原料密度和燒結(jié)工藝的對(duì)比試驗(yàn),建立了碳化硅多晶陶瓷的生長模型,并從熱 力學(xué)和動(dòng)力學(xué)角度解釋了碳化硅多晶生長的原理。熱壓燒結(jié)、 無 壓燒結(jié) 、 熱等靜壓燒結(jié) 的 材料 ,其高溫強(qiáng)度可一直維持到 1600℃ ,是 陶瓷材料中高溫強(qiáng)度最好的材料。燒結(jié)添加劑的加入可以降低 SiC的燒結(jié)溫度,提高其燒結(jié)致密度。 等離子體電火花燒結(jié)( SPS) SPS是近些年才發(fā)展起來的材料處理燒結(jié)技術(shù), SPS可以很快地?zé)Y(jié)陶瓷至全致密化。而是指在 SiO2的參與下 SiC晶格分解。將 αSiC粉和石墨粉按一定比例混合壓成坯塊,加熱到 1650℃ 左右,熔滲硅或通過氣相與C反應(yīng)生成 βSiC,把原先的 αSiC結(jié)合起來。常用大功率 CO2 激光 ,由于反應(yīng)核心區(qū)與反應(yīng)器之間被原料氣所隔離 ,污染極小 ,是當(dāng)前能穩(wěn)定獲得高純超細(xì)粉體的重要方法。 等離子體法 (Plasma Induced CVD)始于 80年代 ,是利用等離子體產(chǎn)生的超高溫激發(fā)氣體發(fā)生反應(yīng) ,等離子體高溫區(qū)域周圍形成巨大的溫度梯度 ,通過急冷作用得到納米顆粒。另一類是加熱聚硅烷或聚碳硅烷放出小單體 后生成骨架 , 最終形成 SiC 粉末。聚合物熱分解法主要是指加熱聚硅烷等聚合物,放出小單體,形成 SiC骨架。 1935 年 Ewell 等首次提出 solgel 法 ,而真正用于陶瓷制備則始于 1952 年左右。戴長虹等以自制的樹脂熱解碳和高純的 SiO2納米粉作為原料,用微波爐做熱源,在較低溫度、極短時(shí)間內(nèi)得到粒度在 5080nm、純度高達(dá) 98% 的 SiC 粉。 ( 2) 合成法 該法是將幾種物質(zhì)在一定條件下使之發(fā)生化學(xué)法反應(yīng),再從產(chǎn)物中得到納米粉體。 熱導(dǎo)率 /[W/(m常溫下 SiC 是一種半導(dǎo)體。 βSiC 為面心立方閃鋅礦型結(jié)構(gòu),晶格常數(shù) a=。為了克服 SiC 陶瓷無壓燒結(jié)工藝和熱壓燒結(jié)工藝等存在的缺陷,人們開發(fā)了高壓高溫?zé)Y(jié)等先進(jìn)燒結(jié)工藝,取得了許多令人滿意的結(jié)果。 SiC 陶瓷材料最早在 20 世紀(jì) 80 年代作為熱結(jié)構(gòu)材料出現(xiàn),具有密度低、抗氧化性能好、耐腐蝕、優(yōu)異的高溫力學(xué)性能和熱物理性能、好的自潤滑性能等優(yōu)點(diǎn),是一種能滿足 1650℃ 使用的新型高溫結(jié)構(gòu)材料和功能材料。 本文利用高壓六面頂壓機(jī)對(duì) SiC陶瓷的高壓燒結(jié),對(duì) SiC陶瓷的高壓燒結(jié)工藝及性能進(jìn)行了初步的研究,并進(jìn)行了理論 分析,探索了其顯微結(jié)構(gòu)與性能之間的關(guān)系。采用超高壓燒結(jié)方法可以在較低溫度、較短時(shí)間、低燒結(jié)助劑添加量下獲得高致密度、高性能的陶瓷。 關(guān)鍵詞: SiC 陶瓷 高溫高壓技術(shù) 燒結(jié)性能 物相分析( XRD 譜 ) 河南理工大學(xué)萬方科技學(xué)院畢業(yè)論文 II ABSTRACT SiC ceramics is a good material with high temperature strength, oxidation resistance, wear resistance, thermal expansion coefficient, high hardness, thermal shock and chemical resistance and other excellent properties, therefore, has been widely used in many fields. However, SiC is a covalent bond strong pound, the selfdiffusion coefficient is extremely small, the sinterability is poor. SiC sintered in the conventional powder metallurgy process conditions, without the inclusion of suitable additives, pure SiC densification is difficult. Using ultrahigh pressure sintering method can lower the temperature, the shorter the time, the low sintering additives added amount obtained by a highdensity and highperformance ceramic. In this paper, based on six sides highpressure jacking machine of SiC ceramics high pressure sintering, high pressure sintering process and the performance of SiC ceramics has carried on the preliminary research, and has carried on the theoretical analysis, to explore the relationship between its microstructure and properties. Through the relative density of SiC ceramic pound phase spectrum and XRD analysis, found that high pressure sintering SiC ceramic material with excellent performance, mainly reflected in the performance of thermal conductivity and toughness in, has the good application prospect. Compared with normal pressure, high pressure sintering can effectively reduce metal sintering time and sintering the ceramic system, promote densification, and thus achieve the purpose of improving performance. Cubic high pressure sintering technology is a fast and efficient sintering technology, greatly reducing the sintering temperature and shorten the sintering time, and 河南理工大學(xué)萬方科技學(xué)院畢業(yè)論文 III close to the theoretical density of the posite ceramic materials can be prepared. Using high pressure sintering process can be obtained by sintering without sintering aids added high density SiC ceramics (density of 92% to 100%). Sintering properties of ceramics have a significant impact, the experimental results show that: Al2O3 sintered SiC is effective sintering aids, in the low dosage (about 2wt%) to achieve a fully dense sintered ceramic. The sintering process is similar with added the sintering aids Ceramics pure SiC sintered similar, but the density of the ceramic is generally higher. Keywords: SiC ceramics, high temperature and high pressure technology, sintering properties, phase analysis (XRD spectra) 河南理工大學(xué)萬方科技學(xué)院畢業(yè)論文 i 目錄 1 緒論 ..............................................................................................................1 引言 ......................................................................................................1 的簡介 ............................................................................................2 的結(jié)構(gòu)及性能 .....................................................................2 SiC 粉體的制備方法 ................................................................2 燒結(jié)方法 ........................................................................................8 反應(yīng)燒結(jié) ...................................................................................8 再結(jié)晶燒結(jié)法 ...........................................................................9 硅滲 SiC 燒結(jié)技術(shù) ...................................................................9 等離子體電火花燒結(jié)( SPS) .................................................9 常壓燒結(jié) .................................................................................10 高壓燒結(jié)法 .............................................................................10 碳化硅陶瓷的應(yīng)用 ............................................................................ 11 陶瓷的研究現(xiàn)狀 .......................................................................... 11 本課題的研究任務(wù)和內(nèi)容 ................................................................12 2 高溫高壓技術(shù) ............................................................................................13 引言 ....................................................................................................13 高溫高壓設(shè)備 ....................................................................................13 壓力和溫度控制系統(tǒng) ........................................................................15 壓力控制系統(tǒng) .................................................