【摘要】第一篇:立體幾何的證明策略 立體幾何的證明策略: 幾何法證明 證明平行:3,2,11、線線平行:公理四,10頁 線面平行的性質定理,課本20頁面面平行的性質定理,36頁 2、線面平行:線面平...
2024-11-12 18:00
【摘要】第一篇:立體幾何證明大題 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、如...
2024-11-12 13:02
【摘要】第一篇:立體幾何證明與解答 必修2第一章《立體幾何初步》單元教學分析 1、本章節(jié)在整個教材體系中的地位和作用 本章教材是高中數(shù)學學習的重點之一,通過研究空間幾何體的結構特征、三視圖和直觀圖、表面...
2024-11-15 06:00
【摘要】立體幾何教案 篇一:立體幾何全部 第一章:空間幾何體 、錐、臺、球的構造特征 一、教學目的 1.知識與技能 (1)通過實物操作,加強學生的直觀感知。 (2)能按照幾何構造特征對空間物...
2025-03-30 06:20
【摘要】 (理)第3講 立體幾何中的向量方法 [考情考向·北京朝陽期末導航] 空間向量在立體幾何中的應用主要體現(xiàn)在利用空間向量解決立體幾何中的位置關系、空間角以及空間距離的計算等問題,是每年北京朝陽期末...
2025-04-03 02:18
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關系以及它們之間距離和夾角等問題;(3)把向量的運算結果“翻譯”成相應的幾何意義。(化為向量問題)(進行向量運
2024-11-12 01:34
【摘要】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
2025-08-05 10:54
【摘要】教學設計方案XueDaPPTSLearningCenter立體幾何知識點整理(文科)一.直線和平面的三種位置關系:1.線面平行符號表示:2.線面相交符號表示:3.線在面內符號表示:二.平行關系:1.線線平行:方法一:用線面平行實現(xiàn)。方法二:用面面平行實現(xiàn)。
2025-08-08 12:27
【摘要】必修2第一章空間幾何體知識點總結正視圖:光線從幾何體的前面向后面正投影得到的投影圖;反映了物體的高度和長度側視圖:光線從幾何體的左面向右面正投影得到的投影圖;反映了物體的高度和寬度俯視圖:光線從幾何體的上面向下面正投影得到的投影圖。反映了物體的長度和寬度三視圖中反應的長、寬、高的特點:“長對正”,“高平齊”,“寬相等”斜二測畫法的基本步驟:①建立適當直角坐標
2025-06-25 00:24
【摘要】空間幾何體空間幾何體的結構柱、錐、臺、球的結構特征簡單幾何體的結構特征三視圖柱、錐、臺、球的三視圖簡單幾何體的三視圖直觀圖斜二測畫法平面圖形空間幾何體中心投影柱、錐、臺、球的表面積與體積平行投影畫圖識圖柱錐臺球圓錐圓臺
2025-01-14 00:33
【摘要】立體幾何??甲C明題匯總考點:線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;(2)平面平面??键c:線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點,求證:平面??键c:線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【摘要】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【摘要】1.立體幾何初步(1)空間幾何體①認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構.②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.③會用平行投影與中心
2025-06-16 12:13
【摘要】立體幾何大題練習(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側面△SAB的面積.【分析】(1)由梯形ABCD,設BC=a,則CD=a,AB=2a,運用
2025-07-24 12:10
【摘要】公理1如果一條直線上的兩點在一個平面內,那么這條直線在此平面內。αABl),,,????????????llBAlBlA(或公理2過不在一條直線上的三點,有且只有一個平面????????CBACBA,,,,使,有且只有一個平面三點不共線αABC公理3如果兩個