【摘要】向量的應(yīng)用(一)一、填空題1.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),則BC邊的中線AD的長(zhǎng)是________.2.過點(diǎn)(1,2)且與直線3x-y+1=0垂直的直線的方程是____________.3.已知直線l1:3x+4y-12=0,l2:7x+y-28=0,則直線l1與l
2025-11-26 03:25
【摘要】向量的應(yīng)用(二)一、填空題1.一質(zhì)點(diǎn)受到平面上的三個(gè)力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài),已知F1,F(xiàn)2成90°角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為________牛頓.2.用力F推動(dòng)一物體水平運(yùn)動(dòng)sm,設(shè)F與水平面的夾角為θ,則對(duì)物體所做的功為________.3
2025-11-26 00:28
【摘要】3.3幾個(gè)三角恒等式變換是數(shù)學(xué)的重要工具,也是數(shù)學(xué)學(xué)習(xí)的主要對(duì)象之一,三角主要有以下三個(gè)基本的恒等變換:(1)代換;(2)公式的逆向變換和多向變換;(3)引入輔助角的變換.前面已利用誘導(dǎo)公式進(jìn)行過簡(jiǎn)易的恒等變換,本節(jié)中將綜合運(yùn)用和(差)角公式、倍角公式進(jìn)行更加豐富的三角恒等變換.1.sin2α2=_______
2025-11-26 03:24
【摘要】向量專項(xiàng)練習(xí)參考答案一、選擇題1.(文)(2014·鄭州月考)設(shè)向量a=(m,1),b=(1,m),如果a與b共線且方向相反,則m的值為( )A.-1 B.1C.-2 D.2[答案] A[解析] 設(shè)a=λb(λ0),即m=λ且1==±1,由于λ0,∴m=-1.[點(diǎn)評(píng)] ,若a=(x1,y1),b=(x1,y2),則a
2025-04-04 05:12
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbbB
2025-11-09 12:10
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbb
【摘要】1.3三角函數(shù)的圖象和性質(zhì)1.三角函數(shù)的周期性情景:自然界中存在著許多周而復(fù)始的現(xiàn)象,如地球的自轉(zhuǎn)和公轉(zhuǎn),物理學(xué)中的單擺運(yùn)動(dòng)和彈簧振動(dòng),圓周運(yùn)動(dòng)等.從正弦函數(shù)、余弦函數(shù)的定義可知,角α的終邊每轉(zhuǎn)一周又會(huì)與原來的位置重合,故sinα,cosα的值也具有周而復(fù)始的變化規(guī)律.思考:正弦函數(shù)、余弦函數(shù)及正切函數(shù)它們都
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡(jiǎn)sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
2025-11-26 10:17
【摘要】向量的數(shù)量積(三)一、填空題1.已知向量a=(2,1),b=(-1,k),a2(2a-b)=0,則k=________.2.已知a=(-3,2),b=(-1,0),向量λa+b與a-2b垂直,則實(shí)數(shù)λ的值為________.3.平面向量a與b的夾角為60°,a=(2,
2025-11-26 10:15
【摘要】向量的數(shù)量積(一)一、填空題1.已知|a|=3,|b|=4,且a與b的夾角θ=150°,則a·b=________.2.已知|a|=9,|b|=62,a·b=-54,則a與b的夾角θ為________.3.|a|=2,|b|=4,向量a與向量b的夾角為120&
【摘要】第一篇:高中數(shù)學(xué)新人教A版必修1 §2.2.2向量減法運(yùn)算及其幾何意義 教學(xué)目標(biāo)1.通過探究活動(dòng),使學(xué)生掌握向量減法概念,理解兩個(gè)向量的減法就是轉(zhuǎn)化為加法來進(jìn)行,掌握相反向量. 2.啟發(fā)學(xué)生能夠...
2025-10-31 12:32
【摘要】課題:向量的概念及表示班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解向量的概念,會(huì)用字母表示向量,理解向量的幾何表示。2、理解零向量、單位向量、平行向量、相等向量、共線向量,相反向量的概念?!菊n前預(yù)習(xí)】問題1、位移和距離兩個(gè)量有什么不同?問題2、舉例說明只有
2025-11-11 01:06
【摘要】階段性檢測(cè)卷(二)(時(shí)間:120分鐘滿分:150分)一、選擇題(本大題共有10個(gè)小題,每小題5分,共50分)→+AC→-BC→+BA→,化簡(jiǎn)后等于()A.3AB→→→→解析AB→+AC→-BC→+BA→
2025-11-26 01:55
【摘要】§相等向量與共線向量【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1理解相等向量與共線向量的概念2由向量相等的定義,理解平行向量與共線向量是等價(jià)的?!局R(shí)梳理、雙基再現(xiàn)】1相等向量是_________________________向量a與b相等,記作_______________。任意兩個(gè)相等的非零向量,都可用一條有向線段來表示,并且
2025-11-23 08:37
【摘要】課題:平面向量復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對(duì)知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問題的能力。【課前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a