【摘要】全國中小學“教學中的互聯(lián)網搜索”優(yōu)秀教學案例評選教案設計一、教案背景1,面向學生:□中學2,學科:數學2,課時:13,學生課前準備:學生課前調查與二次函數有關的實際問題二、教學課題教養(yǎng)方面:學會把一些簡單的實際生活中的二次函數問題抽象轉化為數學問題,并能應用二次函數的相關性質解決問題,能進一步熟練掌握二次函數解析式的各
2025-04-04 04:23
【摘要】二次函數的圖像與性質專項練習【知識要點】1.二次函數:形如的函數叫做二次函數.2.二次函數的圖像性質:(1)二次函數的圖像是;(2)二次函數通過配方可得為常數),其頂點坐標為。(3)當時,拋物線開口,并向上無限延伸;在對稱軸左側時,y隨x的增大而減??;在對稱軸右側
2025-04-04 04:24
【摘要】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;2.已知在平面直
【摘要】第五節(jié)二次函數(2)二次函數有如下性質:①函數的圖象是__________,拋物線頂點的坐標是________,拋物線的對稱軸是________;②當a0時,拋物線開口______,函數在x=處取____值________;在區(qū)間________上是減函數,在________上是增函數;③當a0
2025-11-03 01:26
【摘要】二次函數中的旋轉、平移、對稱變換1、如圖,已知拋物線y=x2+bx+c經過A(1,0),B(0,2)兩點,頂點為D。(1)求拋物線的解析式;(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置,將拋物線沿y軸平移后經過點C,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的
【摘要】二次函數的圖像與性質專題練習 1.()如圖是二次函數y1=ax2+bx+c(a≠0)和一次函數y2=mx+n(m≠0)的圖象,當y2>y1,x的取值范圍是 _________?。?.(2011?揚州)如圖,已知函數y=與y=ax2+bx(a>0,b>0)的圖象交于點P.點P的縱坐標為1.則關于x的方程ax2+bx+=0的解為 _________ .
【摘要】二次函數教學設計課型:新授課課時:一課時年級:九年級一、教材分析《二次函數》是浙教版《數學》九年級上冊中的第一章第一節(jié),是《義務教育課程標準》“數與代數”領域的內容。二次函數是九年級的第一節(jié)函數課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數”,“一元二次方程”,“反比例函數”這幾章代數的學習都為接下來的函數的進一步學習奠定了基礎?!岸魏瘮怠钡膶W習
2025-04-07 02:41
【摘要】二次函數應用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經市場調查發(fā)現,該服裝的單價每降低1元,其銷量可增加10件現設一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應該降價多少元?(4)要使利潤最大,則需降價多少
【摘要】石家莊e度論壇初中數學二次函數做題技巧一般地,自變量x和因變量y之間存在如下關系:?y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數。二次函數表
2025-04-04 03:45
【摘要】二次函數單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC
【摘要】二次函數單元檢測題滿分:120分時間:90分鐘 一.選擇題(每小題4分,共40分)1、拋物線y=x2-2x+1的對稱軸是 ( ) (A)直線x=1 (B)直線x=-1 (C)直線x=2 (D)直線x=-22、(2008年武漢市)下列命題:①若,則;②若,則一元二次方程有兩個不相等的實數根;③若,則一元二次
【摘要】二次函數與圖像1、如圖,在平面直角坐標系中,開口向上的拋物線與軸交于兩點,為拋物線的頂點,為坐標原點.若的長分別是方程的兩根,且(1)求拋物線對應的二次函數解析式;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,過點任作直線交線段于點求到直線的距離分別為,試求的最大值.
【摘要】......2014年中考數學沖刺復習資料:二次函數壓軸題面積類1.如圖,已知拋物線經過點A(﹣1,0)、B(3,0)、C(0,3)三點.(1)求拋物線的解析式.(2)點M是線段BC上的點(不與B,C重合),過M
【摘要】:拋物線經過A(-3,0)、B(0,4)、C(4,0)三點.(1)求拋物線的解析式.(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經過t秒的移動,線段PQ被BD垂直平分,求t的值;(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC的值最小?若存在,請求
【摘要】二次函數圖像平移習題1.要從拋物線y=-2x2的圖象得到y(tǒng)=-2x2-1的圖象,則拋物線y=-2x2必須??[???]A.向上平移1個單位;??B.向下平移1個單位;C.向左平移1個單位;??D.向右平移1個單位.2將函數的圖像向右平移個單位,得到函數的圖像,則a的值為()