【摘要】第一篇:不等式的證明(推薦) 不等式的基本性質 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
2025-10-30 22:00
【摘要】......一.均值不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅
2025-03-25 00:08
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據是不等式的性質,不等式的性分類羅列如下:不等式的性質:a3b?a-b0...
【摘要】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關系——結論學過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關系——結論綜合法:利用某些已經證明過的不等式(例如算術平均
2025-10-29 02:26
【摘要】第一篇:導數(shù)證明不等式 導數(shù)證明不等式 一、當x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2025-10-17 09:50
【摘要】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經常證明什么樣的不等式(3)綜合法經常證明不等式時經常用到:(1)a2≥
2025-10-28 15:49
【摘要】第一篇:證明不等式方法 不等式的證明是高中數(shù)學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2025-10-20 04:53
【摘要】新課標人教版課件系列《高中數(shù)學》必修5《基本不等式-均值不等式》審校:王偉教學目標?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡單應用。?教學重點:?推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)這個重要定
2025-08-04 10:01
2025-08-04 09:13
【摘要】不等式不等式不等式不等式平均值不等式平均值不等式
2025-04-29 00:24
【摘要】案例:“均值不等式”復習課的設計教學要求:系統(tǒng)復習均值不等式及其等價式、特例式,使學生領會其中“≥”或“≤”中取“”的充要條件,掌握放縮不等式的相關配湊技巧,并培養(yǎng)學生的探究精神與心智素質。教學重點:熟練運用均值不等式及其推論放縮不等式。教學難點:求函數(shù)表達式與最值時,“≥”或“≤”中“”成立的條件。教學過程、知識聯(lián)系(如下框圖)對于個正數(shù)而言,積定
2025-04-17 04:53
【摘要】精品資源用均值不等式解題的注意點使用算術與幾何平均值不等式解最值問題時,一定要注意命題成立的條件,切實牢記“各數(shù)為正、正數(shù)之積或和為定值、等號成立的條件”這三點,以防解題失誤。本文就這三點略舉幾例,供同學們參考。例1.設的最值。誤解:由于是定值,所以用均值不等式求得。故y有最小值。辨析:這個解是錯誤的,其根源在于不注意正數(shù)的條件。
2025-03-25 06:05
【摘要】第一篇:均值不等式公式總結及應用 均值不等式應用 a2+b21.(1)若a,b?R,則a+b32ab(2)若a,b?R,則ab£ 2a+b**2.(1)若a,b?R,則3ab(2)若a,b?R,...
2025-10-18 16:18
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-11-09 08:48
【摘要】第一篇:不等式的多種證明方法 不等式的多種證明方法汪洋,合肥師范學院 摘要:數(shù)學是生活中的一門自然科學,而不等式則是構成這門自然科學的眾多基礎中相當重要的組成之一,因此本文專門介紹不等式的各種證明...
2025-10-20 00:24