freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)學(xué)思想方法在數(shù)學(xué)教學(xué)中的運(yùn)用(存儲(chǔ)版)

2024-10-31 12:20上一頁面

下一頁面
  

【正文】 有自主學(xué)習(xí)的時(shí)間和空間,引導(dǎo)他們自己動(dòng)腦、動(dòng)口、動(dòng)手,使學(xué)生有進(jìn)行深入細(xì)致思考的機(jī)會(huì)、自我體驗(yàn)的機(jī)會(huì)。然而不管他們從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)精神,數(shù)學(xué)的思維方法、研究方法、推理方法和著眼點(diǎn)等隨時(shí)隨地發(fā)生作用,使他們受益終身。數(shù)學(xué)思想方法的教學(xué)一定要注意“過程性”,“沒有過程就等于沒有思想”,要讓學(xué)生在過程中逐步體會(huì)和理解。二、在定理和公式的探求中滲透數(shù)學(xué)思想方法著名數(shù)學(xué)家華羅庚說過:“學(xué)習(xí)數(shù)學(xué)最好到數(shù)學(xué)家的紙簍里找材料,不要只看書上的結(jié)論。再如:對于公式課的教學(xué)二元一次方程組的解法(1),本人在教學(xué)中引導(dǎo)學(xué)生分析出解二元一次方程組的各個(gè)步驟,認(rèn)識(shí)到最終使方程組變形為 “X=a,Y=b”的形式,即在保持各方程的左右兩邊相等關(guān)系的前提之下,使“求知”逐步轉(zhuǎn)化為“已知”。因此,在數(shù)學(xué)問題的探索的教學(xué)中重要的是讓學(xué)生真正領(lǐng)悟隱含于數(shù)學(xué)問題探索中的數(shù)學(xué)思想方法。要使學(xué)生把這種思想內(nèi)化成自己的觀點(diǎn),應(yīng)用它去解決問題,就要把各種知識(shí)所表現(xiàn)出來的數(shù)學(xué)思想適時(shí)作出歸納概括。如等式。OD是∠AOB的平分線,OE是∠COB的平分線,并求出∠DOE的度數(shù)。如果把若干個(gè)人之間握手總次數(shù)(單握)稱為“握手問題”,那么像無三點(diǎn)共線的n個(gè)點(diǎn)之間連線;共端點(diǎn)射線夾角(小于平角的角)個(gè)數(shù);一條線段上有若干個(gè)點(diǎn)形成的線段的條數(shù);足球隊(duì)之間單個(gè)循環(huán)比賽場次都可轉(zhuǎn)化為“握手問題”。當(dāng)然,要使學(xué)生真正具備了有個(gè)性化的數(shù)學(xué)思想方法,并不是通過幾堂課就能達(dá)到,但是只要我們在教學(xué)中大膽實(shí)踐,持之以恒,寓數(shù)學(xué)思想方法于平時(shí)的教學(xué)中,學(xué)生對數(shù)學(xué)思想方法的認(rèn)識(shí)就一定會(huì)日趨成熟。二、在方法思考中加強(qiáng)深究處理數(shù)學(xué)內(nèi)容要有一定的方法,但數(shù)學(xué)方法又受數(shù)學(xué)思想的制約。5247。25。數(shù)學(xué)思想和方法本質(zhì)上就是一種應(yīng)用工具,只有在基礎(chǔ)知識(shí)教學(xué)中有意識(shí)的滲透數(shù)學(xué)思想方法才能實(shí)現(xiàn)學(xué)生領(lǐng)會(huì)、掌握并應(yīng)用數(shù)學(xué)基礎(chǔ)知識(shí)的目標(biāo),幫助學(xué)生提高思維水平,優(yōu)化思維品質(zhì),培養(yǎng)創(chuàng)新精神和實(shí)踐能力。25=2000247。(254)2200247。如在學(xué)習(xí)“除數(shù)是小數(shù)的除法”時(shí),先讓學(xué)生嘗試計(jì)算“247。例如:求代數(shù)式的值的教學(xué)時(shí),通過強(qiáng)調(diào)解題的第一步“當(dāng)??時(shí)”的依據(jù),滲透函數(shù)的思想方法——字母每取一個(gè)值,代數(shù)式就有唯一確定的值。轉(zhuǎn)化思想是指根據(jù)已有知識(shí)、經(jīng)驗(yàn),通過觀察、聯(lián)想、類比等手段,把問題進(jìn)行變換,轉(zhuǎn)化為已經(jīng)解決或容易解決的問題。再如:在同一圖形內(nèi),畫出∠AOB=60176。數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。顯然上述的問題解決過程中,學(xué)生通過比較不同的方法,體會(huì)到了數(shù)學(xué)思想在解題中的重要作用,激發(fā)學(xué)生的求知興趣,從而加強(qiáng)了對數(shù)學(xué)思想的認(rèn)識(shí)。更談不上創(chuàng)新能力的形成。比如:在初二剛上的角平分線的性質(zhì)教學(xué)中,本人首先從古時(shí)木匠師傅利用角平分儀平分角入手,讓學(xué)生探討其中的奧妙?老師也制作一簡易的角平分儀,演示如何平分已知角;再折紙?jiān)囼?yàn)平分已知角,請同學(xué)們說出他們平分角的道理?緊接著根據(jù)剛才的原理借助制作的角平分儀讓學(xué)生用尺規(guī)作已知角的平分線;然后再讓學(xué)生動(dòng)手折紙?jiān)囼?yàn),經(jīng)歷探討、研究、發(fā)現(xiàn)、討論、歸納總結(jié)得出命題;最后再讓證明這個(gè)命題,得出角平分線的性質(zhì)。在“變量與函數(shù)”(第一課時(shí))教學(xué)時(shí),當(dāng)學(xué)生面對問題1中S=60t的時(shí)候,雖然對于每個(gè)給定的t值,他們都能計(jì)算出與之對應(yīng)的S值,但此時(shí)絕大多數(shù)學(xué)生只是將這一行行的式子當(dāng)作孤立的算式,將一個(gè)個(gè)數(shù)值簡單地填入表中,其目的只是運(yùn)用關(guān)系式算出答案,而并沒有真正體會(huì)到在這個(gè)過程中變量t的變化將引起變量S也隨之變化。數(shù)學(xué)思想方法蘊(yùn)含于數(shù)學(xué)知識(shí)之中,數(shù)學(xué)概念和原理的形成過程是進(jìn)行數(shù)學(xué)思想方法教學(xué)的重要載體。教學(xué)中教師應(yīng)注重對學(xué)生的觀察、操作、分析、思考能力的培養(yǎng),更應(yīng)不斷地滲透數(shù)學(xué)思想方法。析:從已知條件出發(fā),將其變形(x+y)/xy=3為:x+y=3xy,將其整體代入則: 原式=[2(x+y)3xy]/[(x+y)+xy]=[23xy3xy]/[3xy+xy]=3/4 總之,學(xué)生不是知識(shí)的容器,而是學(xué)習(xí)的主體。五、函數(shù)與方程思想方法方程思想是指運(yùn)用適當(dāng)?shù)臄?shù)學(xué)語言,從數(shù)學(xué)問題的數(shù)量關(guān)系出發(fā),將此問題中的條件轉(zhuǎn)化為各種數(shù)學(xué)模型(可以是方程,可以式不等式,或者是方程和不等式的混合),然后運(yùn)用方程或不等式的解答方式求解。在我們的教學(xué)和學(xué)習(xí)中也經(jīng)常用到化歸思想,如把有理數(shù)的減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算,最后轉(zhuǎn)化為算術(shù)數(shù)的運(yùn)算;把一元一次方程轉(zhuǎn)化為最簡方程;把異分母轉(zhuǎn)化為同分母;將多元方程轉(zhuǎn)化為一元方程;將高次方程化為低次方程;將分式方程化為整式方程;將無理方程化為有理方程;把求 負(fù)數(shù)立方根問題轉(zhuǎn)化為求正數(shù)立方根的問題;把多邊形轉(zhuǎn)化為三角形或特殊四邊形等等。而數(shù)學(xué)思想方法是數(shù)學(xué)基礎(chǔ)知識(shí)的重要組成部分,它貫穿于我們的整個(gè)數(shù)學(xué)教學(xué)過程中。在學(xué)生預(yù)習(xí)時(shí)只要稍加指導(dǎo)就可以將一些數(shù)學(xué)思想方法潛移默化的滲透給學(xué)生。在“平行四邊形、梯形面積的計(jì)算”中,要挖掘轉(zhuǎn)化、化歸的思想方法。例如,圓面積的教學(xué),教師在教學(xué)過程中,先請學(xué)生把圓16等分以后,請他們動(dòng)手拼成近似的平面圖形,即用轉(zhuǎn)化思想,通過“化曲為直”來達(dá)到化未知為已知。例如:在教學(xué)植樹問題時(shí),出示例題:同學(xué)們在全長100m的小路一邊植樹,每隔5m栽一棵(兩端都栽)。推導(dǎo)三角形面積時(shí),把三角形轉(zhuǎn)化成平行四邊形。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,是數(shù)學(xué)教育教學(xué)改革的新視角,是進(jìn)行數(shù)學(xué)素質(zhì)教育的突破口之一。數(shù)學(xué)知識(shí)本身是非常重要的,有人說沒有數(shù)學(xué)就沒有科學(xué)。關(guān)鍵詞:小學(xué)數(shù)學(xué)教學(xué)。本文對小學(xué)數(shù)學(xué)教育教學(xué)的數(shù)學(xué)常用思想滲透做了簡單探索。因此,向?qū)W生滲透一些基本的數(shù)學(xué)思想方法,提高學(xué)生的認(rèn)知水平,是培養(yǎng)一名學(xué)生分析問題和解決
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1