【摘要】§導數(shù)在研究函數(shù)中的應(yīng)用1.單調(diào)性一、基礎(chǔ)過關(guān)1.命題甲:對任意x∈(a,b),有f′(x)0;命題乙:f(x)在(a,b)內(nèi)是單調(diào)遞增的.則甲是乙的______條件.2.函數(shù)f(x)=(x-3)ex的單調(diào)增區(qū)間是________.3.下列函數(shù)中,在(0,+∞)內(nèi)為
2024-12-05 06:24
【摘要】1.定積分一、基礎(chǔ)過關(guān)1.將曲邊y=ex,x=0,x=2,y=0所圍成的圖形面積寫成定積分的形式__________.2.在“以直代曲”中,函數(shù)f(x)在區(qū)間[xi,xi+1]上近似值等于________(填正確命題的序號)①只能是左端點的函數(shù)值f(xi);②可以是右端點的函數(shù)值f(xi+1
【摘要】§復數(shù)的四則運算一、基礎(chǔ)過關(guān)1.如果一個復數(shù)與它的模的和為5+3i,那么這個復數(shù)是__________.2.(1-2i)-(2-3i)+(3-4i)-…-(2008-2009i)+(2009-2010i)-(2010-2011)i+(2011-2012i)=______________.
【摘要】2.合情推理(二)一、基礎(chǔ)過關(guān)1.已知扇形的弧長為l,半徑為r,類比三角形的面積公式:S=底×高2,可推知扇形面積公式S扇=________.2.下列推理正確的是________.(填序號)①把a(b+c)與loga(x+y)類比,則有l(wèi)oga(x+y)=logax+logay;
2024-12-05 01:48
【摘要】§復數(shù)的四則運算課時目標法、乘法法則的合理性及復數(shù)差的定義.乘法法則,能夠熟練地進行復數(shù)的加、減法和乘法運算..1.復數(shù)的加法與減法法則設(shè)a+bi(a,b∈R)和c+di(c,d∈R)是任意兩個復數(shù),定義復數(shù)的加法、減法如下:(a+bi)+(c+di)=___
2024-12-05 09:28
【摘要】§數(shù)學歸納法學習目標思維脈絡(luò)1.能理解用數(shù)學歸納法證明問題的原理.2.會用數(shù)學歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學歸納法證明命題的步驟與技巧方法.121.數(shù)學歸納法數(shù)學歸納法是用來證
2024-11-18 00:49
【摘要】第一章推理與證明§1歸納與類比雙基達標?限時20分鐘?1.把1,3,6,10,15,21,…這些數(shù)叫作三角形數(shù),如圖所示,則第七個三角形數(shù)是().A.27B.28C.29D.30解析第一個三角形數(shù)是1,第二個三角形數(shù)是1+2=3,第三
2024-12-03 00:15
【摘要】復數(shù)的幾何意義雙基達標?限時20分鐘?1.復數(shù)z=-1+i1+i-1,則在復平面內(nèi)z所對應(yīng)的點在第______象限.解析z=?-1+i??1-i??1+i??1-i?-1=2i2-1=-1+i.答案第二象限2.在復平面內(nèi),復數(shù)21+i對應(yīng)的點與原點的距離是____
【摘要】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-17 15:20
【摘要】S?1WhileS10S?S+3M?2S+3EndwhilePrintM蘇北地區(qū)2021-2021學年度第一學期期末聯(lián)合調(diào)研試卷高二數(shù)學(考試時間120分鐘,試卷滿分160分)注意事項:1.答題前,請
2024-12-04 19:53
【摘要】作業(yè):1.已知曲線214yx?和這條曲線上的一點1(1,),4PQ是曲線上點P附近的一點,則點Q的坐標為()A.2(1,())xx???B.21(,())4xx??C.21(1,(1))4xx????D.(21,(1)4xx???
2024-12-05 03:08
【摘要】課題:瞬時變化率??導數(shù)教學目標:(1)什么是曲線上一點處的切線,如何作曲線上一點處的切線?如何求曲線上一點處的曲線?注意曲線未必只與曲線有一個交點。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點處的
2024-11-19 21:26
【摘要】簡單復合函數(shù)的導數(shù)課時目標能求形如f(ax+b)形式的復合函數(shù)的導數(shù).[來源:Z|xx|k.Com]復合函數(shù)的概念一般地,對于兩個函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個函數(shù)為y=f(u)和u=g(x)的復合函數(shù),記作y=f(g(x)).
2024-12-05 09:29
【摘要】人教版高中數(shù)學選修2-2教案全集第一章導數(shù)及其應(yīng)用§教學目標:1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點:平均變化率的概念.教學過程:一.創(chuàng)設(shè)情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函
2025-04-16 12:51
【摘要】雙基達標?限時20分鐘?1.在△ABC中,tanA·tanB>1,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.不確定解析tanA·tanB>1,∴tanA>0,tanB>0,∴A、B為銳角,又tan(A+B)=tan