【摘要】2.2.2間接證明【學習要求】1.了解反證法是間接證明的一種基本方法.2.理解反證法的思考過程,會用反證法證明數(shù)學問題.【學法指導】反證法需要逆向思維,難點是由假設(shè)推出矛盾,在學習中可通過動手證明體會反證法的內(nèi)涵,歸納反證法的證題過程.本課時欄目開關(guān)填一
2025-11-08 17:03
【摘要】復習、分類根據(jù)一類事物的部分對象具有某種性質(zhì),推出這類事物的所有對象都具有這樣性質(zhì)的推理。從特殊到一般的過程⑴通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì)⑵從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想)雖結(jié)論未必正確,但它所具有的由特殊到一般,由具體到抽象的認識功能,對于數(shù)學的發(fā)現(xiàn)卻是十分有用的。觀察、
2025-11-08 17:32
【摘要】合情推理課時目標,能利用歸納和類比等進行簡單的推理.推理在數(shù)學發(fā)現(xiàn)中的作用.1.推理:從一個或幾個已知命題得出________________________過程稱為推理.2.歸納推理和類比推理歸納推理類比推理定義從個別事實中推演出一般性的結(jié)論根據(jù)兩個(或兩類)對象之間在某些方面的
2025-11-25 18:01
【摘要】2.1.2演繹推理【學習要求】1.理解演繹推理的意義.2.掌握演繹推理的基本模式,并能運用它們進行一些簡單推理.3.了解合情推理和演繹推理之間的區(qū)別和聯(lián)系.【學法指導】演繹推理是數(shù)學證明的主要工具,其一般模式是三段論.學習中要挖掘證明過程包含的推理思路,明確演繹推理的基本過程.本
2025-11-08 23:13
【摘要】知識回顧導數(shù)的幾何意義:(瞬時速度或瞬時加速度)物理意義:曲線在某點處的切線的斜率;物體在某一時刻的瞬時度。由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx??????當如
2025-11-09 08:46
【摘要】§導數(shù)的運算常見函數(shù)的導數(shù)課時目標,進一步理解運用概念求導數(shù)的方法.見函數(shù)的導數(shù)公式..1.幾個常用函數(shù)的導數(shù):(kx+b)′=______(k,b為常數(shù));C′=______(C為常數(shù));(x)′=______;(x2)′=______;(x3)′
2025-11-26 09:29
【摘要】第一章 導數(shù)及其應用§教學目標:1.理解平均變化率的概念;2.了解平均變化率的幾何意義;3.會求函數(shù)在某點處附近的平均變化率教學重點:平均變化率的概念、函數(shù)在某點處附近的平均變化率;教學難點:平均變化率的概念.教學過程:一.創(chuàng)設(shè)情景為了描述現(xiàn)實世界中運動、過程等變化著的現(xiàn)象,在數(shù)學中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學中四
2025-04-17 13:03
【摘要】數(shù)學選修2-2知識點總結(jié) 導數(shù)及其應用 一.導數(shù)概念的引入 1.導數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是, 我們稱它為函數(shù)在處的導數(shù),記作或,即 = 例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系
2025-05-30 22:32
【摘要】?§復數(shù)的四則運算(二)一.教學目標(iiiii2321,2321,1,1,??????),再次鞏固復數(shù)的四則運算法則;,再次體會復數(shù)的四則運算是一種新的規(guī)定..,不是多項式運算法則合情推理的結(jié)果。二.重點、難點掌握幾個特殊的復數(shù);加強對新事物的科學認識(可以用類比來記憶新事物,但使用之前應推理、證
2025-11-10 21:26
【摘要】實數(shù)集的一些性質(zhì)和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大?。?3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進行四則運算;(5)負實數(shù)不能進行開偶次方根運算;……(1)實數(shù)集原有的有關(guān)性質(zhì)和特點能否推廣到復數(shù)集?(2)從復數(shù)的特點出發(fā),尋找復數(shù)集新的(實數(shù)集
2025-11-08 17:10
【摘要】合情推理與演繹推理歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫
【摘要】第3章數(shù)系的擴充與復數(shù)的引入§數(shù)系的擴充課時目標i的必要性,了解數(shù)集的擴充過程.中由實數(shù)集擴展到復數(shù)集出現(xiàn)的一些基本概念.,理解復數(shù)相等的充要條件.1.復數(shù)的有關(guān)概念(1)虛數(shù)單位把平方等于-1的數(shù)用符號i表示,規(guī)定__________,i叫作虛數(shù)單位.(2
2025-11-26 09:28
【摘要】數(shù)系的擴充雙基達標?限時20分鐘?1.復數(shù)-2i+的實部是________,虛部是________.答案-22.復數(shù)2+3i,-3+12i,-13i,-3-5i中的純虛數(shù)是________.答案-13i3.已知(2x-1)+i=y(tǒng)-(3-y)i,其中x,
【摘要】第一篇:高中數(shù)學選修2-2知識點總結(jié) 導數(shù)及其應用 一.導數(shù)概念的引入 數(shù)學選修2-2知識點總結(jié) :瞬時速率。一般的,函數(shù)y=f(x)在x=x0處的瞬時變化率是 limf(x0+Dx)-f(...
2025-10-20 09:33
【摘要】§本課時欄目開關(guān)填一填研一研練一練【學習要求】1.了解導數(shù)在解決實際問題中的作用.2.掌握利用導數(shù)解決簡單的實際生活中的優(yōu)化問題.【學法指導】1.在利用導數(shù)解決實際問題的過程中體會建模思想.2.感受導數(shù)知識在解決實際問題中的作
2025-11-09 08:07