【摘要】江蘇省建陵高級中學2021-2021學年高中數(shù)學雙曲線標準方導學案(無答案)蘇教版選修1-1【學習目標】理解雙曲線的定義及標準方程【課前預習】1.回顧橢圓的定義,標準方程2.平面內(nèi)到兩定點的距離的差為常數(shù)的點的軌跡是什么?3.拉鏈演示4.雙曲線的定義:平面內(nèi)與兩個定點1F,2F的距
2024-12-06 00:25
【摘要】導數(shù)的幾何意義一、基礎(chǔ)過關(guān)1.下列說法正確的是()A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在C.若f′(x0)不存在,則曲線y=f(x)在點(x0,
2024-12-03 11:30
【摘要】x2-y2=4的焦點且垂直于實軸的直線與雙曲線交于A,B兩點,則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
2024-12-05 06:41
【摘要】第一章常用邏輯用語§命題與量詞命題一、基礎(chǔ)過關(guān)1.下列語句中是命題的是()A.周期函數(shù)的和是周期函數(shù)嗎?B.sin45°=1C.x2+2x-10D.梯形是不是平面圖形呢?2.下列語句中是命題的為()①
2024-11-19 10:31
【摘要】2020/12/24導數(shù)的幾何意義311..2020/12/24?????????,.,,''的幾何意義是什么呢導數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時變化率在表示函數(shù)導數(shù)我們知道0000xfxxxfxxxfxf??2020/12/24P1P2P
2024-11-17 11:59
【摘要】B'C'CBA251213A'xOy雙曲線的簡單幾何性質(zhì)(一)【學習目標】掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì).【自主學習】雙曲線的簡單幾何性質(zhì):1.范圍、對稱性2.頂點頂點:??0,),0,(21aAaA?特殊點:
【摘要】量詞一、基礎(chǔ)過關(guān)1.下列命題:①中國公民都有受教育的權(quán)利;②每一個中學生都要接受愛國主義教育;③有人既能寫小說,也能搞發(fā)明創(chuàng)造;④任何一個數(shù)除0,都等于0.其中全稱命題的個數(shù)是()A.1B.2C.3D.42.下列命題中,真命題是
【摘要】雙曲線的簡單幾何性質(zhì)(一)復習回顧(1)雙曲線的標準方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質(zhì)的,分析雙曲線0012222????babyax(1)范圍(2)對稱性x≥a,或x≤-a在標準方
2024-11-18 01:22
【摘要】雙曲線的簡單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點,于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【摘要】2.雙曲線的簡單幾何性質(zhì)(共2課時)一、教學目標1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學重點、難點重點:雙曲線的幾何性質(zhì)及初步運用。難點:雙曲線的漸近線。三、教學過程(一)復習提問引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-08 08:44
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
【摘要】雙曲線的簡單幾何性質(zhì)【學習目標】理解并掌握雙曲線的幾何性質(zhì).【重點難點】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學習過程】一、自主預習(預習教材理P56~P58,文P49~P51找出疑惑之處)復習1:寫出滿足下列條件的雙曲線的標準方程:①3,4ab??,焦點在x軸上;②焦點在
2024-12-05 06:47
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學雙曲線的標準方程課后知能檢測蘇教版選修1-1一、填空題1.雙曲線x216-y29=1的焦點坐標為________.【解析】∵c2=a2+b2=25,∴焦點坐標為(±5,0).【答案】(±5,0)2.
2024-12-04 18:02
【摘要】江蘇省漣水縣第一中學高中數(shù)學拋物線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:掌握拋物線的幾何性質(zhì),能應(yīng)用拋物線的幾何性質(zhì)解決問題.教學重點、難點:拋物線的幾何性質(zhì).教學方法:自主探究.課堂結(jié)構(gòu):一、復習回顧拋物線的標準方程有哪些?二、自主探究探究1類比橢圓、雙曲線的幾何性質(zhì),拋物線又會有怎樣的幾
2024-11-20 00:31
【摘要】第7課時雙曲線及其標準方程.、幾何圖形.a,b,c的關(guān)系,并能利用雙曲線中a,b,c的關(guān)系處理“焦點三角形”中的相關(guān)運算.如圖所示,某農(nóng)場在M處有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,∠AMB=90°,能否在
2024-12-05 01:49