freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計(jì)(存儲版)

2025-10-02 23:17上一頁面

下一頁面
  

【正文】 能力?!钡膯栴}就簡單多了。通過作三角形的高,與生5的辦法一樣,如圖5作BC邊上的高AD,則AD=csinB=bsinC,所以bsinB=csinCAcabB,同理可得asinA=bsinBCD圖 5 銳角三角形師:因?yàn)橐C明的是一個(gè)等式,所以應(yīng)從銳角三角形的條件出發(fā),構(gòu)造等量關(guān)系從而達(dá)到證明的目的。ABCAFcaD圖 6 EbCB。BAD=90176。BAC=bsin208。+B)+b|j|cos(90176。本節(jié)課,我們研究問題的突出特點(diǎn)是從特殊到一般,利用了幾何畫板進(jìn)行數(shù)學(xué)實(shí)驗(yàn)。解決這兩個(gè)問題需要先回答目標(biāo)問題:在三角形中,兩邊與它們的對角之間有怎樣的關(guān)系?③為了解決提出的目標(biāo)問題,引導(dǎo)學(xué)生回到他們所熟悉的直角三角形中,得出目標(biāo)問題在直角三角形中的解,從而形成猜想,然后使用幾何畫板對猜想進(jìn)行驗(yàn)證,進(jìn)而引導(dǎo)學(xué)生對猜想進(jìn)行嚴(yán)格的邏輯證明。數(shù)學(xué)(必修4)》(人教版) B組第二題,我將其加工成一個(gè)具有實(shí)際意義的決策型問題);②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實(shí)問題,逐步將現(xiàn)實(shí)問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決過渡性問題4與5時(shí)需要使用正弦定理,借此引發(fā)學(xué)生的認(rèn)知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進(jìn)一步探索解決問題的動機(jī)。)AcBDabC圖 9 向量故bsinB=csinC,同理可得asinA=bsinB師:利用向量在邊上的高上的射影相等,證明了正弦定理,方法非常簡捷明了!【設(shè)計(jì)意圖】利用向量法來證明幾何問題,學(xué)生相對比較生疏,不容易馬上想出來,教師通過設(shè)計(jì)一些遞進(jìn)式的問題給予適當(dāng)?shù)膯l(fā)引導(dǎo),將很難想到的方法合理分解,有利于學(xué)生理解接受。uuurr證法四:如圖8,設(shè)非零向量j與向量BC垂直。ABC\sin208。BACsin208。ACB,BE=csin208。鈍角三角形的情形以課后證明的形式,可使學(xué)生鞏固課堂的成果。生10:(通過計(jì)算)與生5的結(jié)果相同。師:這是個(gè)好主意。可以以直角三角形為特例,先在直角三角形中試探一下。DAGBDv1vAGv2EC,|EG|=|DE|cos208?!驹O(shè)計(jì)意圖】將問題數(shù)學(xué)化,有助于加深學(xué)生對問題的理解,有助于培養(yǎng)學(xué)生的數(shù)學(xué)意識。生1:船從A開往B的情況如圖2,根據(jù)平行四邊形的性質(zhì)及解直角三角形的知識,可求得船在河水中的速度大小|v|及v1與v2的夾角q:|v|=|v1||v2|=|v1||v2|=35, 22BDEC53=4,22v1vFAv2圖 2sinq= 用計(jì)算器可求得q187。因上游暴發(fā)特大洪水,在洪峰到來之前,急需將碼頭A處囤積的重要物資及留守人員用船盡快轉(zhuǎn)運(yùn)到正對岸的碼頭B處或其下游1km的碼頭C處,請你確定轉(zhuǎn)運(yùn)方案。三、設(shè)計(jì)思想培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。本設(shè)計(jì)以一個(gè)實(shí)際問題出發(fā)引入正弦定理并讓學(xué)生在練習(xí)3中解決這一問題,這不但使學(xué)生體會到了數(shù)學(xué)的作用,而且使學(xué)生的數(shù)學(xué)應(yīng)用意識和應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力得到了進(jìn)一步的提高。三、教學(xué)基本流程創(chuàng)設(shè)問題情境,引出問題:在三角形中,已知兩角以及一邊,如何求出另外一邊;結(jié)合初中學(xué)習(xí)過的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理;分析正弦定理的特征及利用正弦定理可解的三角形的類型;應(yīng)用正弦定理解三角形。正弦定理的證明還可以運(yùn)用向量法和作三角形的外接圓來證明。結(jié)束后,重點(diǎn)和學(xué)生一起討論幾何法,作外接圓的證法。B=45176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。命題應(yīng)用講解書本上兩個(gè)例題:例1 在△ABC中,已知A=32176。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?歸納命題我們從特殊的三角形在如圖Rt三角形ABCa=sinA, cbc=sinB.=,asinA=bsinB又sinC=1,所以csinCasinA=bsinB=.在直角三角形中,得出這一關(guān)系。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測量問題的工具。二、問題與例題問題1:在Rt△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 問題2:這三個(gè)式子中都含有哪個(gè)邊長??問題3:那么通過這三個(gè)式子,邊長c有幾種表示方法??問題4:得到的這個(gè)等式,說明了在Rt△中,各邊、角之間存在什么關(guān)系? 問題5:那么能否把銳角三角形轉(zhuǎn)化為直角三角形來求證? 例1.(三)例題分析,加深理解例題:在△ABC中,已知C=,A=,CAC=2620m,求AB.(精確到1米)三、目標(biāo)檢測1.一個(gè)三角形的兩個(gè)內(nèi)角分別是30和45,如果45角所對的邊長為8,那么30角所對邊的長是2.在△ABC中,oo(1)已知A=75,B=45,c=,則a=,b=oooo(2)已知A=30,B=120,b=12,則a=,c=oo3.在△ABC中,b=oc=C=60,則A= ____________ o4.在△ABC中,b=3,c=B=30,則a=_____________ 5.在△ABC中,b=2asinB,則B+C=________________配餐作業(yè)一、基礎(chǔ)題(A組)在△ABC中,若a=,b=,A=300, 則c等于()A、2B、C、25或D、以上結(jié)果都不對 2.在△ABC中,一定成立的等式是()==bcosB==bcosA sinAcosBcosC==則△ABC為abcA.等邊三角形C.有一個(gè)內(nèi)角為30176。三、教學(xué)問題診斷分析正弦定理是三角形邊角關(guān)系中最常見、最重要的兩個(gè)定理之一,它準(zhǔn)確反映了三角形中各邊與它所對角的正弦的關(guān)系,對于它的形式、內(nèi)容、證明方法和應(yīng)用必須引起足夠的重視。還有對于多解的情況,我希望學(xué)生可以借助內(nèi)角和和大邊對大角來判斷,并沒有加大這一點(diǎn)的難度。問題5:通過以上例題和練習(xí),總結(jié)歸納正弦定理可以解決怎樣的三角形問題,歸納出步驟。例1:△ABC中,已知=20,A=300,C=450,解此三角形。連直徑BD,則可得(想一想,為什么?)?在Rt△BCD中,又A=1800D所以sinA=sin(1800D)=即得出與銳角三角形中相同因而在鈍角△ABC中,仍然成立。碰見多解的情況。在探究證明方法時(shí),學(xué)生也具備一定的分析問題的能力,也儲備了一些知識,比如初中時(shí)平面幾何中的知識和已經(jīng)學(xué)習(xí)過的三角函數(shù)的知識,他們也知道也將問題做類比和轉(zhuǎn)化,這些無疑都是有利的。在探究及其證明的過程中,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力,初步感知數(shù)學(xué)中由定性到定量的思維方法。這節(jié)課是正弦定理的第一節(jié)課,需要先證明正弦定理和明確正弦定理可以解決哪些三角形問題??傊艺J(rèn)為學(xué)好正余弦定理也是將學(xué)生的思維水平和運(yùn)算能力提高的一個(gè)好機(jī)會。如右圖,因而,由于C=900,sinC=1 所以可得問題3:這是一個(gè)連比的式子,三者的比值相等,那么這個(gè)比值具體應(yīng)該是多少呢?分析:比值等于,聯(lián)想到直角三角形外接圓的圓心在斜邊的中點(diǎn)上,即斜邊是外接圓的直徑,用2R表示。分析:這屬于已知兩邊及其一邊的對角,求其余兩角一邊的問題。三、課堂小結(jié)本節(jié)課的重要內(nèi)容——正弦定理,是任意三角形中邊角關(guān)系的準(zhǔn)確量化?!墩叶ɡ怼肪o跟必修4(包括三角函數(shù)與平面向量)之后,可以啟發(fā)學(xué)生聯(lián)想所學(xué)知識,運(yùn)用平面向量的數(shù)量積連同三角形、三角函數(shù)的其他知識作為工具,推導(dǎo)出正弦定理。五、教學(xué)過程(一)教學(xué)基本流程(一)創(chuàng)設(shè)情境,引出課題①在Rt△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 學(xué)生容易想到三角函數(shù)式子:(可能還有余弦、正a切的式子)bc sinC=1sinA=sinB=c b c②這三個(gè)式子中都含有哪個(gè)邊長?c學(xué)生馬上看到,是c邊,因?yàn)?sinC=1=B C a c③那么通過這三個(gè)式子,邊長c有幾種表示方法?abc ==sinAsinBsinC④得到的這個(gè)等式,說明了在Rt△中,各邊、角之間存在什么關(guān)系?(各邊和它所對角的正弦的比相等)⑥此關(guān)系式能不能推廣到任意三角形?設(shè)計(jì)意圖: 以舊引新, 打破學(xué)生原有認(rèn)知結(jié)構(gòu)的平衡狀態(tài), 刺激學(xué)生認(rèn)知結(jié)構(gòu)根據(jù)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1