【摘要】等差數(shù)列的前n項和(一)雙基達(dá)標(biāo)限時20分鐘1.等差數(shù)列{an}的前n項和為Sn,若a2+a7+a9=15,則S11的值為().B.50C.55D.110解析由等差數(shù)列性質(zhì)得a2+a7+a9=3a6=15,∴a6=5,S11=11a6=C.答案C
2025-11-18 23:54
【摘要】2.等差數(shù)列的前n項和1.(1)對于任意數(shù)列{an},Sn=a1+a2+a3+?+an,叫做數(shù)列{an}的前n項的和.(2)Sn-Sn-1=an(n≥2),a1=S1(n=1).2.(1)等差數(shù)列{an}的前n項和公式為Sn=n(a1+an)2或Sn=na1+n(n-1)d2.(2)
2025-11-29 13:12
【摘要】第4課時等差數(shù)列的前n項和n項和.n項和公式解決有關(guān)等差數(shù)列的問題.n項和公式的推導(dǎo)方法.高斯是數(shù)學(xué)發(fā)展史上有很大影響的偉大數(shù)學(xué)家之一.高斯十歲時數(shù)學(xué)老師出了一道題:1+2+3+?+99+100.老師剛寫完題目高斯就把解題用的小石板交給了老師,上面只有5050一個答案.當(dāng)時
2025-11-29 02:37
【摘要】等差數(shù)列的概念(二)等差數(shù)列的通項公式(二)課時目標(biāo)..1.等差數(shù)列的通項公式an=a1+(n-1)d,當(dāng)d=0時,an是關(guān)于n的常函數(shù);當(dāng)d≠0時,an是關(guān)于n的一次函數(shù);點(n,an)分布在以____為斜率的直線上,是這條直線上的一列孤立的點.2.已知在公差為d的等差數(shù)列{an}中
2025-11-26 10:14
【摘要】景榮洲課前熱身(3)等差數(shù)列的性質(zhì).(1)等差數(shù)列的定義.一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2025-11-08 05:48
【摘要】{an}中,a5=10,S3=3,則()A.a(chǎn)1=-2,d=3B.a(chǎn)1=2,d=-3C.a(chǎn)1=-3,d=2D.a(chǎn)1=3,d=-2解析:由a5=10,S3=3得?????a1+4d=10,3a1+12×3×2×
2025-11-21 05:16
【摘要】課題:等差數(shù)列前n項和公式(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】掌握等差數(shù)列的前n項和的公式及推導(dǎo)該公式的數(shù)學(xué)思想方法,能運用等差數(shù)列的前n項和的公式求等差數(shù)列的前n項和.【課前預(yù)習(xí)】1.(1)你如何快速求出?100321??????
2025-11-11 01:05
【摘要】等差數(shù)列的前n項和教材分析等差數(shù)列的前n項和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問題.在現(xiàn)實生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項和提供了一種重要方法.教材首先通過具體的事例,探索歸納出等差數(shù)列前n項和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項和公式.為深化對公式的理解,通過對具體例子的研究,弄清等差數(shù)列的前n項和與等差
2025-06-07 23:54
【摘要】等比數(shù)列的前n項和(第2課時)學(xué)習(xí)目標(biāo)掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題.通過等比數(shù)列的前n項和公式的推導(dǎo)過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情
2025-11-30 03:41
【摘要】2.等差數(shù)列的前n項和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入數(shù)學(xué)史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱為歷史上最偉大的三位數(shù)學(xué)家之一,他就是18世紀(jì)德國著名的數(shù)學(xué)家——高斯.高斯在上小學(xué)時,就能很快地算出1+2+3+…+1
2025-11-08 23:16
【摘要】等差數(shù)列的概念與通項公式(2)班級學(xué)號姓名學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo).1,,,naadn中的三個,求另外一個的問題.等差數(shù)列定義進(jìn)行等差數(shù)列的判斷或證明.教學(xué)重點:等差數(shù)列的定義及通項公式;教學(xué)難點:等差數(shù)列的性質(zhì)及其理解與應(yīng)用.
2025-11-10 19:35
【摘要】第一篇:高二數(shù)學(xué)《等差數(shù)列》(2課時)教案(新人教A版必修5) 課題:§ 授課類型:新授課 (第2課時) ●三維目標(biāo) 知識與技能:明確等差中項的概念;進(jìn)一步熟練掌握等差數(shù)列的通項公式及推導(dǎo)公...
2025-10-19 20:48
【摘要】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)n項和導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】n項和公式n項和公式解決等差數(shù)列的問題【學(xué)習(xí)重點】在具體的問題情境中,如何靈活運用等差數(shù)列的前n項和公式解決相應(yīng)的實際問題2.鞏固練習(xí)(1)設(shè)nS為等差數(shù)列{}na的前n項和,若33,S?624S
2025-11-10 07:34
【摘要】等差數(shù)列的前n項和數(shù)列{an}是等差數(shù)列的條件an-an-1=d等差數(shù)列{an}的通項公式an=a1+(n-1)d等差數(shù)列{an}的性質(zhì)m+n=p+qam+an=ap+aq一、數(shù)列前n項和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a1+
2025-09-30 17:27
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)7數(shù)列的概念與簡單表示法新人教版必修51.下列說法中,正確的是()A.?dāng)?shù)列1,3,5,7可表示為{1,3,5,7}B.?dāng)?shù)列1,0,-1,-2與數(shù)列-2,-1,0,1是相同的數(shù)列C.?dāng)?shù)列{n+1n}的第k項為1+1kD.?dāng)?shù)列0,2,4,6,8,?可記為{2n}
2025-11-19 01:17