【摘要】高中數(shù)學必修五基本不等式題型(精編)變2.下列結論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關系正確的是例2、解下列不等式(1)
2025-04-04 05:12
【摘要】2021/1/61高中數(shù)學復習課代數(shù)第五章不等式第一課時[知識要點]本章的知識要點包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點間和內(nèi)在
2025-11-21 12:27
【摘要】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
2025-12-28 16:33
【摘要】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設直角三
2025-11-29 02:37
【摘要】陜西省咸陽市涇陽縣云陽中學高中數(shù)學不等關系導學案北師大版必修5【教學目標】1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量的不等關系,理解不等式(組)的實際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法;3.情態(tài)與價值:通過解決具體問題,體會
2025-11-18 22:09
【摘要】第2課時不等式的性質(zhì)..建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設原住
【摘要】不等關系課時目標.,并能運用這些性質(zhì)解決有關問題.1.比較實數(shù)a,b的大小(1)文字敘述如果a-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負數(shù),那么a____b,反之也成立.(2)符號表示a-b0?a____b;a-
2025-11-26 00:28
【摘要】2020年高中數(shù)學映射與函數(shù)學案新人教B版必修1一、三維目標:,表示方法及一一映射的概念;,區(qū)別映射與函數(shù);二、學習重、難點:重點:,表示方法,映射與函數(shù)區(qū)別;難點:映射的概念,映射與函數(shù)區(qū)別;
2025-11-10 23:23
【摘要】為您服務教育網(wǎng)·易做易錯題選不等式部分一、選擇題:1.(如中)設若0f(b)f(c),則下列結論中正確的是A(a-1)(c-1)0Bac1Cac=1Dac1錯解原因是沒有數(shù)形結合意識,正解是作出函數(shù)的圖象,由圖可得出選D.2.(如中)設成立的充分
2026-01-05 11:11
【摘要】不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當a1時,原不等式等價于:1-a,即&
2025-04-04 05:05
【摘要】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-11-09 08:48
【摘要】不等關系與不等式1.甲、乙兩人同時從A到B.甲一半路程步行,一半路程跑步;乙一半時間步行,一半時間跑步.如果兩人步行速度、跑步速度均相同,則()A.甲先到BB.乙先到BC.兩人同時到BD.誰先到無法確定2.設,不等式能成立的個數(shù)為()A.0B.1C.
2025-11-24 03:12
【摘要】解不等式高考要求不等式要求層次重難點一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識內(nèi)容1.含有一個未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關系如下表(以為例):判別式
2025-07-24 02:03
【摘要】陜西省吳堡縣吳堡中學高中數(shù)學第三章不等關系與不等式1典型例題素材北師大版必修5【例1】已知a|b|;(4)a2b2;(5);(6).【例2】設f(x)=ax2+bx且1≤f(-1)≤2,2≤f(1)≤
【摘要】高中數(shù)學不等式練習題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x