【摘要】課題:余弦定理(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用余弦定理解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題【課前預(yù)習(xí)】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-11-20 01:05
【摘要】平面向量的坐標(biāo)運(yùn)算(二)一、填空題1.已知三點(diǎn)A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點(diǎn)坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【摘要】章末過(guò)關(guān)檢測(cè)卷(二)第2章平面向量(測(cè)試時(shí)間:120分鐘評(píng)價(jià)分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.(2021·遼寧卷)已知點(diǎn)A(1,3),B(4,-1),則與向量AB→同方向的單位向量
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)y=Asin導(dǎo)學(xué)案蘇教版必修4班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組學(xué)習(xí)目標(biāo)1.通過(guò)探究理解參數(shù),,A??對(duì)sin()yAx????(0,0A???)的圖象的影響。2.會(huì)用兩種方法敘述由xysin?到si
2024-12-05 10:16
【摘要】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》10平面向量數(shù)量積的坐標(biāo)表示導(dǎo)學(xué)案北師大版必修4使用說(shuō)明96頁(yè)到第97頁(yè)內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部?jī)?nèi)容.,大膽展示,充分發(fā)揮學(xué)習(xí)小組的高效作用,完成合作探究部分.學(xué)習(xí)目標(biāo)1.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.2.理解掌握向量的模、夾角等公式;
2024-11-19 23:19
【摘要】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-18 12:17
【摘要】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示2020/12/25研修班2問(wèn)題提出1.向量加法與減法有哪幾種幾何運(yùn)算法則?λa?(1)|λa|=|λ||a|;(2)λ0時(shí),λa與a方向相同;λ0時(shí),λa與a方向相反;
【摘要】復(fù)習(xí):共線向量基本定理:向量與向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點(diǎn)且,用表
2024-11-17 12:03
【摘要】第二章一、選擇題1.設(shè)e1、e2是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
2024-11-27 23:46
【摘要】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2025-08-05 19:24
【摘要】......第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等
2025-06-23 01:37
【摘要】高中數(shù)學(xué)競(jìng)賽講義(八)──平面向量一、基礎(chǔ)知識(shí)定義1?既有大小又有方向的量,稱(chēng)為向量。畫(huà)圖時(shí)用有向線段來(lái)表示,線段的長(zhǎng)度表示向量的模。向量的符號(hào)用兩個(gè)大寫(xiě)字母上面加箭頭,或一個(gè)小寫(xiě)字母上面加箭頭表示。書(shū)中用黑體表示向量,如a.|a|表示向量的模,模為零的向量稱(chēng)為零向量,規(guī)定零向量的方向是
2025-04-04 05:15
【摘要】平面向量基本定理復(fù)習(xí)回顧:1、兩個(gè)向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個(gè)實(shí)數(shù)如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù),,使得
2024-11-09 00:20