【摘要】課題:余弦定理(2)班級:姓名:學號:第學習小組【學習目標】運用余弦定理解決一些與測量和幾何計算有關的實際問題【課前預習】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-11-20 01:05
【摘要】平面向量的坐標運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【摘要】章末過關檢測卷(二)第2章平面向量(測試時間:120分鐘評價分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(2021·遼寧卷)已知點A(1,3),B(4,-1),則與向量AB→同方向的單位向量
【摘要】2.平面向量的坐標運算情景:我們知道,在直角坐標平面內,每一個點都可用一對有序實數(shù)(即它的坐標)表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標,應如何進行運算?1.兩個向量和的坐標等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【摘要】江蘇省建陵高級中學2021-2021學年高中數(shù)學y=Asin導學案蘇教版必修4班級:姓名:學號:第學習小組學習目標1.通過探究理解參數(shù),,A??對sin()yAx????(0,0A???)的圖象的影響。2.會用兩種方法敘述由xysin?到si
2024-12-05 10:16
【摘要】陜西省榆林育才中學高中數(shù)學第2章《平面向量》10平面向量數(shù)量積的坐標表示導學案北師大版必修4使用說明96頁到第97頁內容,完成預習引導的全部內容.,大膽展示,充分發(fā)揮學習小組的高效作用,完成合作探究部分.學習目標1.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.2.理解掌握向量的模、夾角等公式;
2024-11-19 23:19
【摘要】 《平面向量正交分解及坐標表示》導學案 【學習目標】 (1)理解平面向量的坐標的概念; (2)掌握平面向量的坐標運算; (3)會根據(jù)向量的坐標,判斷向量是否共線. 【重點難點】 教學重點...
2025-04-03 01:19
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數(shù),使得ab
2024-11-18 12:17
【摘要】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【摘要】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【摘要】第二章一、選擇題1.設e1、e2是平面內所有向量的一組基底,則下面四組向量中,不能作為基底的是()A.e1+e2和e1-e2B.3e1-2e2和4e2-6e1C.e1+2e2和e2+2e1D.e2和e1+e2[答案]B[解析]∵4e2-6e1=-2(3e1-2
2024-11-27 23:46
【摘要】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點,則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點構成
2025-08-05 19:24
【摘要】......第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點,則().A.與共線 B.與共線C.與相等
2025-06-23 01:37
【摘要】高中數(shù)學競賽講義(八)──平面向量一、基礎知識定義1?既有大小又有方向的量,稱為向量。畫圖時用有向線段來表示,線段的長度表示向量的模。向量的符號用兩個大寫字母上面加箭頭,或一個小寫字母上面加箭頭表示。書中用黑體表示向量,如a.|a|表示向量的模,模為零的向量稱為零向量,規(guī)定零向量的方向是
2025-04-04 05:15
【摘要】平面向量基本定理復習回顧:1、兩個向量共線的充要條件:與非零向量共線的充要條件是,使得有且只有一個實數(shù)如果,是同一平面內的兩個不共線向量,那么對于這一平面內的任一向量,有且只有一對實數(shù),,使得
2024-11-09 00:20