【摘要】?第3課時三角函數(shù)的單調(diào)性與值域【課標要求】掌握正弦函數(shù)、余弦函數(shù)的圖象,理解并掌握它們的奇偶性、值域相關的性質.【核心掃描】1.了解三角函數(shù)的單調(diào)性和值域.(重點)2.會求函數(shù)的單調(diào)區(qū)間和值域.(難點)自學導引1.正、余弦函數(shù)的單調(diào)性正弦函數(shù)y=sinx(x∈R)在
2024-11-09 22:06
【摘要】2020屆高考數(shù)學二輪復習系列課件09《函數(shù)與導數(shù)的綜合應用》函數(shù)的綜合應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點就是要用運
2024-11-11 08:50
【摘要】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-11 02:53
【摘要】 導數(shù)在研究函數(shù)中的應用 函數(shù)的單調(diào)性與導數(shù)學習目標:.(易混點).(重點).(重點、難點)[自主預習·探新知]1.函數(shù)的單調(diào)性與其導數(shù)正負的關系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f(x):f′(x)的正負f(x)的單調(diào)性f′(x)>0單調(diào)遞增f′(x)<0單調(diào)遞減思考:如果在某個區(qū)間內(nèi)恒有f′(x)=0,那么函數(shù)f(x)有什么特
2025-06-25 05:13
【摘要】南京市第三十九中學θ第2.1.1節(jié)開頭的第三個問題中,氣溫θ是關于時間t的函數(shù)4812162024to-2248610xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y?
2024-11-17 22:49
【摘要】《函數(shù)的單調(diào)性》教學設計北京景山學校許云堯一、教學目標的確定1使學生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.3通過知識的探究過程培養(yǎng)學生細心觀察、認真分析、嚴謹論證的良好思維習慣;讓學生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理
2025-07-17 20:38
【摘要】導數(shù)應用:含參函數(shù)的單調(diào)性討論(二)對函數(shù)(可求導函數(shù))的單調(diào)性討論可歸結為對相應導函數(shù)在何處正何處負的討論,若有多個討論點時,要注意討論層次與順序,一般先根據(jù)參數(shù)對導函數(shù)類型進行分類,從簡單到復雜。1、典型例題例1、已知函數(shù),討論函數(shù)的單調(diào)性.分析:討論單調(diào)性就是確定函數(shù)在何區(qū)間上單調(diào)遞增,在何區(qū)間單調(diào)遞減。而確定函數(shù)的增區(qū)間就是確定的解區(qū)間;確定函數(shù)的減區(qū)間就是確定的解
2025-06-20 12:25
【摘要】觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應函數(shù)的哪些變化規(guī)律:1、觀察這三個圖象,你能說出圖象的特征嗎?2、隨x的增大,y的值有什么變化?畫出下列函數(shù)的圖象,觀察其變化規(guī)律:1、從左至右圖象上升還是下降____?2、在區(qū)間________上,隨著x的增大,f(x)的值隨著_
2024-11-24 23:00
【摘要】第一篇:函數(shù)的單調(diào)性 函數(shù)的單調(diào)性說課稿(市級一等獎)函數(shù)單調(diào)性說課稿《函數(shù)的單調(diào)性》說課稿(市級一等獎)旬陽縣神河中學詹進根 我說課的課題是《普通高中課程標準實驗教科書必修1》第二章第三節(jié)——函...
2024-11-04 01:37
【摘要】第二課時函數(shù)單調(diào)性的性質單調(diào)性與最大(?。┲祮栴}提出1.函數(shù)在區(qū)間D上是增函數(shù)、減函數(shù)的定義是什么?)(xf3.增函數(shù)、減函數(shù)有那些基本性質?2.增函數(shù)、減函數(shù)的圖象分別有何特征?知識探究(一)1212()()0fxfxxx???若
2025-08-16 01:33
【摘要】函數(shù)單調(diào)性的應用?教學目的?重點難點?教學過程?退出教學目的?使學生通過對知識的運用加深對知識的理解與掌握。?在問題解決的過程中滲透數(shù)形結合的思想方法和運動、變化的觀點。?引導學生挖掘知識的作用,提高運用知識分析問題和解決問題的能力。?返回重點難點
2024-11-12 01:38
【摘要】觀察正弦函數(shù)和余弦函數(shù)的圖象xyo1-1-2?-??2?3?4?正弦函數(shù)單調(diào)區(qū)間有單調(diào)區(qū)間的特點1、端點是二分之個2、區(qū)間長度為xyo1-1-2?-??2?3?4?余弦函數(shù)單調(diào)區(qū)間有單調(diào)區(qū)間的特點1、端點是
2024-11-09 06:04
【摘要】函數(shù)的單調(diào)性廈門市啟悟中學徐玉燕2020年10月28日觀察函數(shù)y=2x+1的函數(shù)值隨自變量x變化的規(guī)律?f(x)=2x+1的函數(shù)值隨自變量x的增大而增大觀察函數(shù)y=-2x+1的函數(shù)值隨自變量x變化的規(guī)律?f(x)=-2x+1的函數(shù)值隨自變量x的增大而減小0x
2024-11-06 17:17
【摘要】§函數(shù)的簡單性質(函數(shù)的單調(diào)性)主講人:吳江市青云中學水菊芳引例1:圖示是某市一天24小時內(nèi)的氣溫變化圖。氣溫θ是關于時間t的函數(shù),記為θ=f(t),觀察這個氣溫變化圖,說明氣溫在哪些時間段內(nèi)是逐漸升高的或下降的?引例2:畫出下列函數(shù)的圖象(1)y=xxyy=x
2024-11-09 09:54
【摘要】導數(shù)在函數(shù)的單調(diào)性、極值中的應用一、知識梳理1.函數(shù)的單調(diào)性與導數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內(nèi)為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33