【摘要】第一篇:《數(shù)學(xué)廣角——簡(jiǎn)單的排列組合》教學(xué)設(shè)計(jì) 《數(shù)學(xué)廣角——簡(jiǎn)單的排列組合》教學(xué)設(shè)計(jì)數(shù)學(xué)課題組朱菊鳳 【教材分析】 “數(shù)學(xué)廣角”是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)從二年級(jí)上冊(cè)開(kāi)始新增設(shè)的一個(gè)單元,是...
2025-10-16 13:15
【摘要】從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【摘要】│排列、組合│知識(shí)梳理知識(shí)梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2025-08-05 07:24
【摘要】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運(yùn)算”重復(fù)排列問(wèn)題要區(qū)分兩類(lèi)元素:一類(lèi)可以重復(fù),另一類(lèi)不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過(guò)“住店法”可順利解題。例18名同學(xué)爭(zhēng)奪3項(xiàng)冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱(chēng)為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問(wèn)題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無(wú)重復(fù)的四位數(shù),試求滿(mǎn)足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【摘要】排列組合基礎(chǔ)知識(shí)及習(xí)題分析在介紹排列組合方法之前我們先來(lái)了解一下基本的運(yùn)算公式!C5取3=(5×4×3)/(3×2×1)C6取2=(6×5)/(2×1)通過(guò)這2個(gè)例子看出CM取N公式是種子數(shù)M開(kāi)始與自身連續(xù)的N個(gè)自然數(shù)的降序乘積做為分子。以取值N的階層作為分母P53=5×4
2025-06-25 23:11
【摘要】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有
2025-08-05 07:03
【摘要】名稱(chēng)內(nèi)容分類(lèi)原理分步原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系:做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類(lèi))完成間接(分步驟)完成做一件事,完成它可以有n類(lèi)辦法,第一類(lèi)辦法中有m1種不同的方法,第二類(lèi)辦法中有m2種不同的方法…,第n類(lèi)
【摘要】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱(chēng)為從n個(gè)中取r個(gè)的無(wú)重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱(chēng)為全排列。一般不說(shuō)可重即無(wú)重??芍嘏帕械南鄳?yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱(chēng)
2025-06-25 23:09
【摘要】完美WORD格式專(zhuān)題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【摘要】主題課題:兩個(gè)原理和排列知識(shí)內(nèi)容:1、分類(lèi)計(jì)數(shù)原理和分步計(jì)數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計(jì)算公式4.排列應(yīng)用題能力目標(biāo):1、通過(guò)兩個(gè)原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實(shí)際問(wèn)題的能力;2、通過(guò)排列的學(xué)習(xí),可以遷移知識(shí),更好的運(yùn)用兩個(gè)原理,并能解決稍復(fù)雜的數(shù)學(xué)問(wèn)題。3、培養(yǎng)學(xué)生的分析問(wèn)題能力、解決問(wèn)題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
【摘要】高中數(shù)學(xué)教案第十章排列組合和概率(第1課時(shí))王新敞課題:?10.1加法原理和乘法原理(一)教學(xué)目的:1了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣.,培養(yǎng)學(xué)生的歸納概括能力..教學(xué)重點(diǎn):分類(lèi)計(jì)數(shù)原理(加法原理)與分步計(jì)數(shù)原理(乘法原理)教學(xué)難點(diǎn):分類(lèi)計(jì)數(shù)原理(加法原理)與分步計(jì)數(shù)原理(乘法原理)的準(zhǔn)確理解授課類(lèi)型:
2025-08-05 07:17
【摘要】排列組合的綜合應(yīng)用例1將4個(gè)不同的小球放入4個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個(gè)盒子里放2個(gè)球;(2)恰有兩個(gè)盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評(píng)例
2025-10-31 08:09
【摘要】例解排列組合中涂色問(wèn)題于涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類(lèi)問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類(lèi)型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
【摘要】例:七個(gè)同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?解法一:第一步從(除去甲、乙)其余的5位同學(xué)中選2位同學(xué)站在排頭和排尾有A52種方法;第二步從余下的5位同學(xué)中選5位進(jìn)行排列(全排列)有A55種方法,所以一共有A52A55=2400種排列方法.解法二:若甲站在排頭有A66種方法;若乙站在
2025-08-05 07:35