【摘要】解排列組合的問題一般的思考過程如下:元素放進(jìn)位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個(gè)計(jì)數(shù)原理)即采取分步還是分類,或分步分類同時(shí)進(jìn)行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個(gè)元素。(4)掌握一些常用的解題策略。常用的解題策略
2025-08-15 23:54
【摘要】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-05 19:14
【摘要】;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【摘要】排列、組合的應(yīng)用問題高考要求:,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。,掌握排列數(shù)公式。,掌握組合數(shù)計(jì)算公式及組合數(shù)的性質(zhì)。3名男生,4名女生,在下列不同要求下求不同的排列方法總數(shù).(1)甲不在排頭,乙不在排尾.(2)男、女生各不相鄰.(3)甲站中間,乙、丙必須相鄰。(4)甲與乙、丙二人
2024-11-09 03:17
【摘要】組合(2)2022/8/302④要明確堆的順序時(shí),必須先分堆后再把堆數(shù)當(dāng)作元素個(gè)數(shù)作全排列.②若干個(gè)不同的元素局部“等分”有m個(gè)均等堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!①若干個(gè)不同的元素“等分”為m個(gè)堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2025-08-05 16:59
【摘要】歐洲杯是國(guó)家隊(duì)之間進(jìn)行的比賽.類似于亞洲杯,非洲杯.每四年舉辦一界.一般是在六月中旬開賽.歷經(jīng)15-20天.參賽隊(duì)為16只,主客場(chǎng)制問要打幾場(chǎng)比賽?北京一日游有北京天安門、故宮、天壇、頤和園四個(gè)項(xiàng)目,問導(dǎo)游有幾種安排方式?六位密碼鎖可以設(shè)定幾種密碼?要回答這些問題,就要要用到分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.
2025-08-05 07:17
【摘要】排列組合測(cè)試卷1.7個(gè)人站一隊(duì),其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個(gè)人分乘兩輛不
2025-08-05 07:38
【摘要】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【摘要】高中數(shù)學(xué)排列組合易錯(cuò)題分析排列組合問題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個(gè)基本原理出錯(cuò)排列組合問題基于兩個(gè)基本計(jì)數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.例1(1995年上海高考題)從6臺(tái)原裝計(jì)算機(jī)和5臺(tái)組裝計(jì)算機(jī)中任意選取5臺(tái),其中至少有原裝與組裝計(jì)算機(jī)各兩臺(tái),則不同的取法有種.誤解:因?yàn)榭?/span>
2025-03-25 02:36
【摘要】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24
【摘要】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個(gè)基本原理是排列、組合的開頭課,學(xué)習(xí)它所需的先行知識(shí)跟學(xué)生已熟知的數(shù)學(xué)知識(shí)聯(lián)系很少,排列、組合的計(jì)算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會(huì)準(zhǔn)確地應(yīng)用兩個(gè)基本原理分析和解決一些簡(jiǎn)單的問題對(duì)于學(xué)生陌生的知識(shí),在開頭課中首先作一個(gè)大概的介紹,使學(xué)生有一個(gè)
2025-06-17 05:28
【摘要】 排列組合專題復(fù)習(xí)及經(jīng)典例題詳解1.學(xué)習(xí)目標(biāo)掌握排列、組合問題的解題策略(1)特殊元素優(yōu)先安排的策略:(2)合理分類與準(zhǔn)確分步的策略;(3)排列、組合混合問題先選后排的策略;(4)正難則反、等價(jià)轉(zhuǎn)化的策略;(5)相鄰問題捆綁處理的策略;(6)不相鄰問題插空處理的策略.綜合運(yùn)用解題策略解決問題.:(1)知識(shí)梳理1.分類計(jì)數(shù)原理(加法原理
2025-04-17 01:31
【摘要】排列組合問題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問題,可先把無位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.,如果甲乙兩個(gè)必須不相鄰,那么不同的排法種
2025-03-25 02:37
【摘要】高考數(shù)學(xué)中涂色問題的常見解法及策略與涂色問題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,因而這類問題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問題的基本方法。例1。用5種不同的顏色給圖中
【摘要】二十種排列組合問題的解法排列組合問題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚恚虒W(xué)目標(biāo).;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題.提高學(xué)生解決問題分析問題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦法,在第1類辦法中