【摘要】一、平面及其方程二、直線及其方程三、小結(jié)思考題第四節(jié)平面與直線一、平面(plane)及其方程(equation)xyzo0MM如果一非零向量垂直于一平面,這向量就叫做該平面的法線向量.法線向量的特征:垂直于平面內(nèi)的任一向量.已知},,,{CBAn??),,,(000
2025-08-21 12:41
【摘要】微積分基本定理(79)31、變速直線運動問題變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【摘要】微積分初步輔導老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務《微積分初步》是計算機和數(shù)控專業(yè)的一門必修的重要基礎課程,通過本課程的學習,使學生對一元函數(shù)微分、積分有初步認識和了解,使學生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學生邏輯推理能力、自學能力,較熟練的運算能力和綜合運用所學知識分析問題、解決問題的能力
2025-01-19 21:35
【摘要】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46
【摘要】話說微積分制作人:項晶菁數(shù)學的核心領域是:?代數(shù)學——研究數(shù)的理論;?幾何學——研究形的理論;?分析學——溝通形與數(shù)且涉及極限運算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學
2025-01-20 00:10
【摘要】第五章微積分模型例1:(不允許缺貨的存儲模型)設某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設備要付生產(chǎn)準備費(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準備費5000元,存儲費每件每日1元,若生產(chǎn)能力遠大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【摘要】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17
【摘要】微積分理論數(shù)列的極限函數(shù)的極限微積分線性代數(shù)馮國臣2021/12/12定義如果對于任意給定的正數(shù)?(不論它多么小),總存在正數(shù)N,使得對于Nn?時的一切nx,不等式???axn都成立,那末就稱常數(shù)a是數(shù)列nx的極限,或者稱數(shù)列nx收斂于a,記為
【摘要】如果先讓烏龜爬行一段路后,再讓劉翔去追,那么劉翔是永遠也追不上烏龜?shù)摹?、談談劉翔與烏龜賽跑的問題理由:劉翔追上烏龜之前,必須先到達烏龜?shù)某霭l(fā)點,而這段時間內(nèi),烏龜又向前爬行了一段路,于是劉翔必須趕上這段路,于是烏龜又向前爬行了一路。。。,如此分析下去,劉翔離烏龜越來越近,但卻是永遠也追不上烏龜。破解悖論
2025-01-04 08:27
【摘要】韓淑霞公共郵箱:,Key:135246私人郵箱:請每個小班的數(shù)學課代表將電話號碼給我電話:153271419031.分析基礎:函數(shù),極限,連續(xù)2.微積分學:一元微積分(上冊)(下冊)3.向量代數(shù)與空間解析幾何4.無窮級數(shù)
2025-05-03 23:22
【摘要】第五節(jié)機動目錄上頁下頁返回結(jié)束對坐標的曲面積分一、基本概念觀察以下曲面的側(cè)(假設曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-08 05:11
【摘要】1習題課一、曲線積分的計算法二、曲面積分的計算法線面積分的計算第十章機動目錄上頁下頁返回結(jié)束2一、曲線積分的計算法1.基本方法曲線積分第一類(對弧長)第二類(對坐標)(1)統(tǒng)一積分變量轉(zhuǎn)化定積分用參數(shù)方程用直
2025-07-21 22:10
【摘要】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2025-08-11 16:42
【摘要】微積分積分公式積分上限的函數(shù)及其導數(shù)設函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應值,所以它在[a,
2025-08-12 17:45
【摘要】湖北師范學院數(shù)學與統(tǒng)計學院數(shù)學建模實驗電子教案微積分的基礎知識及其在Matlab中的實現(xiàn)明巍數(shù)學與統(tǒng)計學院湖北師范學院數(shù)學與統(tǒng)計學院數(shù)學建模實驗電子教案數(shù)學建模種常用的微積分知識在Matlab中的實現(xiàn)1.極限運算2.求導運算3.積分運算4.函數(shù)的Taylor
2025-08-04 22:40