【正文】
n the product development cycle early on, providing advice on how the product and its ponents can be designed to facilitate manufacture and assembly. It also proceeds with early stages of manufacturing planning for the product. This concurrent engineering approach is pictured in Fig.(1).(b). In addition to manufacturing engineering, other function are also involved in the product development cycle, such as quality engineering, the manufacturing departments, field service, vendors supplying critical ponents, and in some cases the customer who will use the product. All if these functions can make contributions during product development to improve not only the new product’s function and performance, but also its, testability, serviceability, and maintainability. Through early involvement, as opposed to reviewing the final product design after it is too late to conveniently make any changes in the design。 instead, they alter physical properties. Heat treating operations on metal parts are the most mon examples. Similar heating treatments are performed on glass to produce tempered glass. For most manufactured parts, these propertyenhancing operations are not required in the processing sequence.Finally finish operations usually provide a coat on the work parts (or assembly) surface. Examples included electroplating, thin film deposition techniques, and painting. The purpose of the coating is to enhance appearance, change color, or protect the surface from corrosion, abrasion, and so forth. Finishing operations are not required on many parts。附錄2 外文文獻原文Process Planning and Concurrent EngineeringT. Ramayah and Noraini IsmailAbstract:The product design is the plan for the product and its ponents and subassemblies. To convert the product design into a physical entity, a manufacturing plan is needed. The activity of developing such a plan is called process planning. It is the link between product design and manufacturing. Process planning involves determining the sequence of processing and assembly steps that must be acplished to make the product. In the present chapter, we examine processing planning and several related topics.Process Planning Process planning involves determining the most appropriate manufacturing and assembly processes and the sequence in which they should be acplished to produce a given part or product according to specifications set forth in the product design documentation. The scope and variety of processes that can be planned are generally limited by the available processing equipment and technological capabilities of the pany of plant. Parts that cannot be made internally must be purchased from outside vendors. It should be mentioned that the choice of processes is also limited by the details of the product design. This is a point we will return to later.Process planning is usually acplished by manufacturing engineers. The process planner must be familiar with the particular manufacturing processes available in the factory and be able to interpret engineering drawings. Based on the planner’s knowledge, skill, and experience, the processing steps are developed in the most logical sequence to make each part. Following is a list of the many decisions and details usually include within the scope of process planning.這可以通過以下方法來完成:(1)通過成立由產(chǎn)品設計者制造工程師和其他員工(例如:質(zhì)量工程師、材料專家)組成的攻關小組來進行產(chǎn)品開發(fā);(2)通過要求設計工程師用一些事業(yè)時間在制造上,以能夠掌握第一手可造性和可裝配性是如何通過產(chǎn)品設計聯(lián)系在一起的;(3)通過指派制造工程師到產(chǎn)品設計部門在一個臨時的或?qū)H蔚幕A上做一個還原性顧問。例如,如果產(chǎn)品設計者決定用鋁砂型鑄造法制造一個分開零件,但是這個零件的工藝特性只能通過加工來完成(如螺紋孔和配合公差),制造工程師沒有選擇的余地,只能按照先砂型鑄造在加工的方法來達到既定要求。他同樣為產(chǎn)品提供制造計劃繼續(xù)進行的早期準備,這種并行工程的路徑在圖(1)b中被描繪出。 CAPP 系統(tǒng)可以在界面上與其它應用軟件結合,象成本估計和工作標準。在這樣一個系統(tǒng)中,CAPP成為設計和制造之間的直接聯(lián)結。這幾年的一個趨勢,尤其在汽車工業(yè),公司和零件供應者建立緊密關系??紤]以下例子制造或購買決定。一個機械加工廠從一個金屬經(jīng)銷商購買他的起動柄原料或從一個鑄造廠購買他的砂型鑄件。裝配工藝規(guī)程制訂包括裝配指令的發(fā)展,但是更詳細地對于小批量生產(chǎn)。在很多零件中最后工序是并不需要的。許多有印象的摸鍛件就是這一類,這類零件能夠經(jīng)常在鍛造(初級工序)階段被成型,因此減少了必要的加工(二級工序)。制造單個零件的典型加工順序包括:(1) 一個基本工序 (2) 二級工序 (3) 提高物質(zhì)特性工序和(4) 最后工序。 .操作步驟.工藝規(guī)程制訂工藝規(guī)程制訂包括決定最適當?shù)闹圃旒把b配步驟和順序,在這些順序和步驟中他們必須根據(jù)所提出的詳細的設計說明書規(guī)范完成給定零件或產(chǎn)品制造。參考文獻[1] . 淮陰:淮陰工學院,2003[2] 葉偉昌. 機械工程及自動化簡明手冊(上冊). 北京:機械工業(yè)出版社,2001[3] 徐錦康. 機械設計. 北京:機械工業(yè)出版社,2001[4] 成大先. 機械設計手冊(第四版 第4卷). 北京:化學工業(yè)出版社,2002 [5] 葛常清. 機械制圖(第二版). 北京:中國建材工業(yè)出版社,2000[6] 朱對稱循環(huán)疲勞極限 脈動循環(huán)疲勞極限 等效系數(shù) 截面33上的應力水平面彎矩 垂直面彎矩 合成彎矩 彎曲應力幅 彎曲平均應力 扭轉切應力 扭轉切應力幅和平均切應力 應力集中系數(shù)有效應力集中系數(shù) 因在此截面處,有軸徑變化,過渡圓角半徑r=1mm,由和,從附錄表1中查出。減速器低速軸與工作機聯(lián)接用的聯(lián)軸器,由于軸的轉速較低,不必要求具有較小的轉動慣量,但傳遞轉矩較大,又因減速器與工作機不在同一底座上,要求具有較大的軸線偏移補償,因此選用鼓形齒式聯(lián)軸器。32180。6180。 第二級齒輪傳動設計計算 因傳動無嚴格限制,生產(chǎn)批量小,故小齒輪用40Cr,調(diào)質(zhì)處理,硬度取為280HB。其具體參數(shù)如下:型號: Y100L24額定功率/kW: 鐵心長度/mm: 135氣隙長度/mm: 定子外徑/mm: 155定子內(nèi)徑/mm: 98定子線規(guī)ncdc: 每槽線數(shù): 31并聯(lián)支路數(shù): 1繞組型式: 單層交叉節(jié)距: 1~9/2~10/18~11槽數(shù)Z1/Z2: 36/32轉動慣量/(kg當機器向下運動時,輪與墻之間是滾動摩擦,使機器向下運動時,可以使機器與墻之間保持一定的距離,從而不會撞到墻或者玻璃,當墻左右搖晃時,這時,輪與墻之間產(chǎn)生滑動摩擦,對機器左右搖擺有一定的抑制作用。傳統(tǒng)的是人手清潔,用繩把人系住和定位,逐層清潔。所以,隨著我國改革開放的不斷深入,政府,公民的環(huán)保意識的不斷加強,建筑表面清潔問題必將引起各方面的高度重視,建筑清洗行業(yè)必然具有廣泛的發(fā)展前景,將產(chǎn)生巨大的經(jīng)濟效益和社會效益.建筑表面清洗主要包括外墻清洗和中央空調(diào)風管的清洗,目前外墻清洗是采用傳統(tǒng)的“蜘蛛人”清洗,這是以犧牲生命為代價的非人工作,部分城市頒布了建筑表面清洗條例; 由于非典事件,公共衛(wèi)生得到了高度的重視,特別是中央空調(diào)風管的清洗,最近有關中央空調(diào)的清洗條例很快出臺;因此對于建筑表面清洗提供一個完備的解決方案,必然打破一個傳統(tǒng)的產(chǎn)業(yè)格局,改變了人們的工作方式,用機器人清洗代替?zhèn)鹘y(tǒng)的人工清洗或無法清洗,是必然的發(fā)展趨勢。目錄1引言 1 1 1 22 方案評價與選擇 3 3 3 4 4 4 5 5 53 運動學及結構方案的確定 6 6 8 84 傳動零件的設計計算 10 第一級齒輪傳動設計計算 10 10 10 14 14 14 16 畫簡圖 18 初估軸徑 18 初選聯(lián)軸器 19 初選軸承 195軸的校核計算 20 20 206高速軸軸承驗算 28致 謝 30參考文獻 31附錄 31附錄1 外文文獻翻譯附錄2 外文文獻原文附錄3 自動墻臂清洗機裝配圖 A0附錄4 自動墻臂清洗機零件圖1 A1附錄5 自動墻臂清洗機零件圖2 A1附錄6 自動墻臂清洗機零件圖3 A31引言 清洗建筑表面的意義隨著人類社會的不斷發(fā)展進步,城市規(guī)模不斷擴大,城市建筑更加規(guī)范,完美。%翻倍增加至4%,同時還伴隨以產(chǎn)業(yè)政策的優(yōu)惠。綜觀目前市面上可見的洗墻機,清洗方式主要還是以人工清洗為主,所以都是以掛籠垂降,再以人工方式清洗墻面;然而垂掛以及掛籠的升降方式便較具變化。為了使機器在刷子往返運動中,