【摘要】第6章常微分方程的數(shù)值解法???????0')(),,(uaubtautfu0()(,())dtautufu??????uuLutfut
2025-05-02 05:32
【摘要】三、利用Matlab求微分方程的解析解求微分方程(組)的解析解命令:dsolve(‘方程1’,‘方程2’,…‘方程n’,‘初始條件’,‘自變量’)記號(hào):在表達(dá)微分方程時(shí),用字母D表示求微分,D2、D3等表示求高階微分.任何D后所跟的字母為因變量,自變量可以指定或由系統(tǒng)規(guī)則選定為確省.例如,微分方程02
2025-05-15 04:18
【摘要】自動(dòng)化專業(yè)綜合設(shè)計(jì)報(bào)告自動(dòng)化專業(yè)綜合設(shè)計(jì)報(bào)告設(shè)計(jì)題目:利用matlab編寫S函數(shù)求解微分方程所在實(shí)驗(yàn)室:自動(dòng)化系統(tǒng)仿真實(shí)驗(yàn)室指導(dǎo)教師:郭衛(wèi)平
2025-05-16 02:20
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-06-25 01:32
【摘要】數(shù)學(xué)實(shí)驗(yàn)ExperimentsinMathematics重慶郵電學(xué)院基礎(chǔ)數(shù)學(xué)教學(xué)部微分方程實(shí)驗(yàn)?zāi)康膶?shí)驗(yàn)內(nèi)容MATLAB2、學(xué)會(huì)用Matlab求微分方程的數(shù)值解.實(shí)驗(yàn)軟件1、學(xué)會(huì)用Matlab求簡(jiǎn)單微分方程的解析解.1、求簡(jiǎn)單微分方程的解析解.4、實(shí)驗(yàn)作業(yè).2、求微分方程的數(shù)值解.3、數(shù)學(xué)建模實(shí)例
2025-01-04 11:38
【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對(duì)于一階微分方程,
2025-06-24 03:52
【摘要】二階常微分方程的中心差分求解學(xué)校:中國(guó)石油大學(xué)(華東)理學(xué)院姓名:張道德一、實(shí)驗(yàn)?zāi)康?、構(gòu)造二階常微分邊值問題:其中為上的連續(xù)函數(shù),為給定常數(shù)的中心差分格式;2、根據(jù)中心差分格式求解出特定例題的數(shù)值解,并與該例題的精確解進(jìn)行比較。二、中心差分格式的構(gòu)造將區(qū)間分成等分,分點(diǎn)為:。于是我們得到區(qū)間的一個(gè)網(wǎng)絡(luò)剖分。稱為網(wǎng)格的節(jié)點(diǎn)稱為步長(zhǎng)。
2025-07-18 19:25
【摘要】目錄待定系數(shù)法常數(shù)變異法冪級(jí)數(shù)法特征根法升階法降階法關(guān)鍵詞:微分方程,特解,通解,二階齊次線性微分方程常系數(shù)微分方程待定系數(shù)法解決常系數(shù)齊次線性微分方程特征方程(1)特征根是單根的情形設(shè)是特征方程的的個(gè)彼此不相等的根,則相應(yīng)的方程有如下個(gè)解:如果均為實(shí)數(shù),則是方程的個(gè)線性無關(guān)
2025-06-18 06:16
【摘要】西南科技大學(xué)理學(xué)院1第五講全微分方程與積分因子三、積分因子法一、全微分方程與原函數(shù)二、全微分方程判定定理與不定積分法四、小結(jié)西南科技大學(xué)理學(xué)院2定義:即(,)(,)(,)duxyMxydxNxydy??(
2025-10-07 21:13
【摘要】1第三章二階及高階微分方程可降階的高階方程線性齊次常系數(shù)方程線性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【摘要】浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》1第六章常微分方程及方程組的解法常微分方程及其求解概述初值問題解法邊值問題解法浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》2常微分方程及其求解概述初值問題解法
2025-08-01 13:19
【摘要】???
2025-06-21 23:02
【摘要】本科畢業(yè)論文(設(shè)計(jì))題目:高階微分方程的解法及應(yīng)用哈爾濱學(xué)院本科畢業(yè)論文(設(shè)計(jì))畢業(yè)論文(設(shè)計(jì))原創(chuàng)性聲明本人所呈交的畢業(yè)論文(設(shè)計(jì))是我在導(dǎo)師的指導(dǎo)下進(jìn)行的研究工作及取得的研究成果。據(jù)我所知,除文中已經(jīng)注明引用的內(nèi)容外,本論文(設(shè)計(jì))不包含其他個(gè)人已經(jīng)發(fā)表或撰寫過的研究成果。對(duì)本論文(設(shè)計(jì))的研究做出重要貢
2025-06-18 15:28
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束常系數(shù)線性微分方程組*第十節(jié)解法舉例解微分方程組高階微分方程求解消元代入法算子法第七章目錄上頁(yè)下頁(yè)返回結(jié)束常系數(shù)線性微分方程組解法步驟:第一步用消元法消去其他未知函數(shù),第二步求出
2025-08-04 09:09
【摘要】普通方程和微分方程方程組的求解1、線性方程組的解法(1)、直接法使用“/”和“\”:a=magic(5)b=diag(ones(5))a\b使用lu分解X=[377;170;235][LU]=lu(X)b=[123]'Y1=L\by=U\Y1(2)、迭代法Jacobi迭代法:%該函數(shù)用Jacobi迭代法
2025-06-23 23:58