【摘要】目錄上頁下頁返回結(jié)束一階微分方程的習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第七章目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階
2025-10-25 16:13
【摘要】主講:林亮?xí)r間:性質(zhì):選修對(duì)象:信科08-1、2微分方程數(shù)值解法差分格式的穩(wěn)定性和收斂性問題的提出我們先看一個(gè)數(shù)值例子,考慮初邊值問題??????????????????????????????
2025-01-04 22:48
【摘要】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應(yīng)用實(shí)例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運(yùn)動(dòng)規(guī)律的重要工具,找出函數(shù)關(guān)
2025-10-25 21:15
【摘要】第八節(jié)高階線性微分方程一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體便離開平衡位置,并在平衡位置附近作上下振動(dòng).試確定物體的振動(dòng)規(guī)律)(txx?.解受力分析;.1cxf??恢復(fù)力;.2dtdxR???阻力xxo,maF??,22dtdxcx
2025-10-08 00:48
【摘要】湖南工程學(xué)院微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告專業(yè)班級(jí)姓名學(xué)號(hào)組別信息與計(jì)算科學(xué)1001鄧鶴201010010215實(shí)驗(yàn)日期2013年5月9日第4次實(shí)驗(yàn)指導(dǎo)老師楊繼明評(píng)分實(shí)驗(yàn)名稱用差分格式求雙曲型方程的邊值問題實(shí)驗(yàn)?zāi)康氖煜ふ莆针p曲型方程邊值問題的差分格式并程序?qū)崿F(xiàn)實(shí)驗(yàn)原理與步驟:利用差分格式求下面波動(dòng)方程混合邊
2025-07-21 03:07
【摘要】偏微分方程組解法某厚度為10cm平壁原溫度為20,現(xiàn)其兩側(cè)面分別維持在20和120,試求經(jīng)過8秒后平壁內(nèi)溫度分布,并分析溫度分布隨時(shí)間的變化直至溫度分布穩(wěn)定為止。式中為導(dǎo)溫系數(shù),;。解:模型轉(zhuǎn)化為標(biāo)準(zhǔn)形式:初始條件為:邊界條件為:,函數(shù):%偏微分方程(一維動(dòng)態(tài)傳熱)function[c,f,s]=pdefu
2025-06-19 21:46
【摘要】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(下)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第七章常微分方程高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第四節(jié)高階線性微分方程河海大學(xué)理學(xué)院《高等數(shù)學(xué)》一、概念的引入例:設(shè)有一彈簧下掛一重物,如果使物體具有一個(gè)初始速度00?v,物體
2025-05-07 12:10
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解。可降階的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)腥當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
2025-05-14 21:59
【摘要】可降階的高階微分方程1小結(jié)思考題作業(yè))()(xfyn?型的方程),(yxfy????型的方程),(yyfy????型的方程可降階的高階微分方程第5章微分方程應(yīng)用可降階的高階微分方程2)()(xfyn?一、
2025-04-29 05:40
【摘要】本節(jié)介紹幾種特殊的高階方程,它們的共同特點(diǎn)是經(jīng)過適當(dāng)?shù)淖兞看鷵Q可將其化成較低階的方程來求解??山惦A的高階微分方程前面介紹了五種標(biāo)準(zhǔn)類型的一階方程及其求解方法,但是能用初等解法求解的方程為數(shù)相當(dāng)有限,特別是高階方程,除去一些特殊情況可用降階法求解,一般都沒有初等解法,以二階方程
2025-05-12 17:48
【摘要】第十章微分方程第六節(jié)可降階的高階微分方程一、型的微分方程二、型的微分方程三、型的微分方程一、)()(xfyn?令,)1(??nyz因此1d)(Cxxfz???即
【摘要】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過求解微分方程求出未知函數(shù),自變量只有一個(gè)的微分方程稱為常微分方程。:常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-18 13:01
【摘要】上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1第4章微分方程與差分方程上一頁下一頁返回首頁湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2在科學(xué)技術(shù)和經(jīng)濟(jì)管理等許多實(shí)際問題中,系統(tǒng)中的變量間往往可以表示成一個(gè)(組)微分方程或差分方程,它們是兩類不同的方程,前者處理的量的離散變量,間隔時(shí)間周期作為統(tǒng)計(jì)的.動(dòng)態(tài)
2025-05-14 06:04
【摘要】微分方程數(shù)值解法實(shí)驗(yàn)報(bào)告姓名:班級(jí):學(xué)號(hào):一:問題描述求解邊值問題:其精確解為問題一:取步長h=k=1/64,1/128,作五點(diǎn)差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點(diǎn)后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34
【摘要】第三章微分方程模型一、微分方程知識(shí)簡介我們要掌握常微分方程的一些基礎(chǔ)知識(shí),對(duì)一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55