【摘要】第一篇:利用導(dǎo)數(shù)證明不等式的常見題型經(jīng)典 利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧 技巧精髓 1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高...
2025-10-18 18:01
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【摘要】......數(shù)學(xué)數(shù)列與不等式的綜合問題突破策略【題1】 等比數(shù)列{an}的公比q>1,第17項(xiàng)的平方等于第24項(xiàng),求使a1+a2+…+an>恒成立的正整數(shù)n的范圍.【題2】設(shè)數(shù)列{an}的前項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;(2)若an+1≥a
2025-03-25 02:51
【摘要】精品資源用均值不等式解題的注意點(diǎn)使用算術(shù)與幾何平均值不等式解最值問題時(shí),一定要注意命題成立的條件,切實(shí)牢記“各數(shù)為正、正數(shù)之積或和為定值、等號(hào)成立的條件”這三點(diǎn),以防解題失誤。本文就這三點(diǎn)略舉幾例,供同學(xué)們參考。例1.設(shè)的最值。誤解:由于是定值,所以用均值不等式求得。故y有最小值。辨析:這個(gè)解是錯(cuò)誤的,其根源在于不注意正數(shù)的條件。
2025-03-25 06:05
【摘要】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
2024-11-11 02:53
【摘要】不等式與不等式組測試姓名__________學(xué)號(hào)____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個(gè)數(shù)是??
2024-11-11 04:58
【摘要】構(gòu)造函數(shù)解不等式1.(2015全國2理科).設(shè)函數(shù)f’(x)是奇函數(shù)的導(dǎo)函數(shù),f(-1)=0,當(dāng)時(shí),,則使得成立的x的取值范圍是(A)(B)(C)(D)2若定義在上的函數(shù)是奇函數(shù),,當(dāng)>0時(shí),<0,恒成立,則不等式>0的解集ABCD.3定義在上的函數(shù)滿足:則不等式(其中為自然對(duì)數(shù)的底數(shù))的解集為(
2025-06-20 04:07
【摘要】.......初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)復(fù)習(xí)課回顧·知識(shí)一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識(shí):含
2025-10-03 13:38
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【摘要】利用導(dǎo)數(shù)證明不等式的兩種通法吉林省長春市東北師范大學(xué)附屬實(shí)驗(yàn)學(xué)校金鐘植岳海學(xué)利用導(dǎo)數(shù)證明不等式是高考中的一個(gè)熱點(diǎn)問題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法用列舉的方式歸納和總結(jié)。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉(zhuǎn)化為證明(),進(jìn)而構(gòu)造輔助函數(shù),然后利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性或
2025-06-20 04:22
【摘要】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對(duì)照證題目標(biāo)進(jìn)行合情合理的放大和縮小的過程,在使用放縮法證題時(shí)要注意放和縮的“度”,否則就不能...
2025-10-19 05:02
【摘要】第一篇:用向量可以證明不等式 運(yùn)用向量可以證明不等式 向量一章中有兩處涉及到不等式,其一,rara+rrrb3a-b或-rrrb£a-b;其二,rragbr£arb。前者的幾何意義是三角形兩邊之和...
2025-10-26 12:20
【摘要】第一篇:9導(dǎo)數(shù)情境下的不等式證明2 導(dǎo)數(shù)情境下的不等式證明21、已知函數(shù)g(x)=xlnx,設(shè)0 x2且x1?[-1,0],x2?[1,2]. 2、設(shè)函數(shù)f(x)=x+3bx+3cx有兩個(gè)極...
2025-10-20 11:20