【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-07-24 19:51
【摘要】20170927112學(xué)校:_考號(hào):_________一、選擇題(本大題共8小題,),y滿足約束條件,則目標(biāo)函數(shù)z=x+3y的最大值為( ?。〢.?????B.??????????D.
2025-03-25 02:05
【摘要】習(xí)題精選精講解簡(jiǎn)單的不等式1解不等式:(x2-x+1)(x+1)(x-4)(6-x)0解:對(duì)于任何實(shí)數(shù)x,x2-x+10恒成立,所以原不等式等價(jià)于:(x+1)(x-4)(6-x)0∴(x+1)(x-4)(x-6)0所以原不等式的解為:x-1
2025-01-10 08:38
【摘要】《不等式》復(fù)習(xí)題一、填空題1、不等式組的解集是2、將下列數(shù)軸上的x的范圍用不等式表示出來(lái) 3、的非正整數(shù)解為4、ab,則-2a-2b.5、3X≤12的自然數(shù)解有個(gè).6、不等
2025-06-24 19:20
【摘要】第一篇:不等式證明練習(xí)題 11n+3恒成立,則n的最大值是()a-bb-ca-c A.2B.3C.4D.61.設(shè)abc,n?N,且 x2-2x+22.若x?(-¥,1),則函數(shù)y=有()2x...
2024-10-29 06:56
【摘要】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關(guān)概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實(shí)際問(wèn)題.其中,以不等式(組)為工具分析問(wèn)題、解決問(wèn)題是重點(diǎn),也是教學(xué)中的主要難點(diǎn);一元一次不等式(組)及其相關(guān)概念、不等式的性質(zhì)是基礎(chǔ)知識(shí);掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【摘要】第一篇:不等式練習(xí)題(文科) 不等式練習(xí)題 1、設(shè)a,b,c?R,且ab,則() A.a(chǎn)cbc B. 1123ab C.a(chǎn)b 2D.a(chǎn)b32、設(shè)a,b,c?R,且ab,則()...
2024-11-14 06:40
【摘要】第三章不等式數(shù)學(xué)(人教B版·必修5)典題導(dǎo)析課前自主預(yù)習(xí)重點(diǎn)難點(diǎn)展示思路方法技巧建模應(yīng)用引路探索延拓創(chuàng)新課堂鞏固訓(xùn)練名師辨誤做答第三章不等式數(shù)學(xué)
2025-08-05 04:34
【摘要】均值不等式均值不等式又名基本不等式、均值定理、重要不等式。是求范圍問(wèn)題最有利的工具之一,在形式上均值不等式比較簡(jiǎn)單,但是其變化多樣、使用靈活。尤其要注意它的使用條件(正、定、等)。1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)3.均值不等式鏈:若都是正數(shù),則,當(dāng)且僅
2025-03-25 07:11
【摘要】新課標(biāo)數(shù)學(xué)選修4-5柯西不等式教學(xué)題庫(kù)大全一、二維形式的柯西不等式二、二維形式的柯西不等式的變式三、二維形式的柯西不等式的向量形式借用一句革命口號(hào)說(shuō):有條件要用;沒有條件,創(chuàng)造條件也要用。比如說(shuō)吧,對(duì)a^2+b^2+c^2,并不是不等式的形狀,但變成(1/3)*(1^2+1^2+1^2)*(a^2+b^2
2025-03-25 04:42
【摘要】:22)8321464(???(2-3)(3+2):03)151(30sin227????2x2-x-3=0x2+6x-16=03.先化簡(jiǎn),再求值:xxxxx21222????,其中12??x
2024-11-24 13:31
【摘要】柯西不等式練習(xí)題1.(09紹興二模)設(shè)。(1)求的最大值;(2)求的取值范圍。2.(09寧波十校聯(lián)考)已知,且,求的最小值。3.(09溫州二模)已知,且。(1)若,求的值;(2)若恒成立,求正數(shù)的取值范圍。4、(09嘉興二模)設(shè),且。(1)求證:;(2)求的最小
【摘要】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無(wú)解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【摘要】河南省泌陽(yáng)縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時(shí),axgxfaaxgxfaa時(shí),axgxfxgxfxgxf
2025-05-09 00:31
2025-08-15 22:11