【摘要】精品資源不等式證明的種種策略不等式證明教材中只給出幾種證明方法如比較法、分析法、綜合法來(lái)證明不等式。而實(shí)際上證明不等式的方法是名目繁多的,所使用的方法可以涉及到函數(shù)、數(shù)列、導(dǎo)數(shù)、三角函數(shù)、向量等許多方面的知識(shí)點(diǎn),同時(shí)掌握好證明不等式的方法對(duì)于加深理解這些知識(shí)點(diǎn)又起著深化作用。下面我們拋開(kāi)比較法、分析法、綜合法去闡述證明不等式的其他方法。。:分析:用代數(shù)方法來(lái)證明該題是較
2025-06-26 04:15
【摘要】不等式的性質(zhì)(復(fù)習(xí)課)一、基礎(chǔ)知識(shí)1、兩個(gè)數(shù)的大小關(guān)系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個(gè)數(shù)的大小的方法作差變形判斷符號(hào)得出結(jié)論3、作
2024-11-07 02:27
【摘要】 不等式的證明一、素質(zhì)教育目標(biāo)1、知識(shí)教學(xué)點(diǎn)⑴證明不等式的方法—比較法⑵證明不等式的方法—綜合法⑶證明不等式的方法—分析法2、能力訓(xùn)練點(diǎn) 通過(guò)證明不等式的訓(xùn)練進(jìn)一步培養(yǎng)邏輯推理論證能力,培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力。二、學(xué)法指導(dǎo) 證明不等式就是要證明所給不等式在給定條件下恒成立,由于不等式的形式多種多樣,所以證明不等式的方法也就靈活多樣,具體問(wèn)題具體分析是
2025-08-21 17:07
【摘要】設(shè)X為一n維賦范空間,其范數(shù)定義為||x||p=i=1n|xi|p1p,1≤p∞,證明以下命題:1.||x||2≤||x||1≤n|x|2;2.||x||p≤||x||1;3.||x||q≤||x||p≤n1p-1q|x|q,pq證:1.先證||x||2≤||x||1|x1|2+|x2|2≤(|x1|+|x2|)2?(|x1|2+|x
2025-06-18 14:02
【摘要】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【摘要】Holder不等式與Minkowski不等式的證明赫德(Holder)不等式是通過(guò)Young不等式來(lái)證明的,而閔可夫斯基(Minkowski)不等式是通過(guò)赫德(Holder)不等式來(lái)證明的.Young不等式如果x,y0?,實(shí)數(shù)p1?以及實(shí)數(shù)q?滿足1?p??+1?q??
2025-06-18 23:25
【摘要】4、排序不等式(一)概念【9】:設(shè)有兩組實(shí)數(shù)(1)(2)滿足(3)(4)另設(shè)(5)是實(shí)數(shù)組(
2025-06-25 22:56
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個(gè)實(shí)數(shù)a和b的大小時(shí),可借助a-b的符號(hào)來(lái)判斷。步驟一般為:作差——變形——判斷(正號(hào)、負(fù)號(hào)、零)。變形時(shí)常用的方法有...
2024-10-28 23:16
【摘要】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對(duì)數(shù)(嚴(yán)格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【摘要】第一篇:不等式證明1 本資料從網(wǎng)上收集整理 難點(diǎn)18不等式的證明策略 不等式的證明,方法靈活多樣,,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來(lái)是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式的...
2024-11-08 22:00
【摘要】教學(xué)目標(biāo):,一元二次及可化為一元一次或二次的分式及高次不等式一.含絕對(duì)值的不等式的解法|x|a(a0)1、利用公式性質(zhì):2、兩邊平方:(兩邊都是正數(shù))3、利用幾何意義:4、零點(diǎn)分段討論:例4:|x-2|+|2x+1|5析:①x-②
【摘要】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設(shè)有兩組實(shí)數(shù) a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2024-11-06 03:16
【摘要】第一篇:?jiǎn)握{(diào)性證明不等式 單調(diào)性證明不等式 x證明e≥x+:記K(x)=e-x-1,則K′(x)=e-1,當(dāng)x∈(0,1)時(shí),K′(x)>0,因此K(x) 在[0,1]上是增函數(shù),故K(x)≥K...
2024-10-30 23:20
【摘要】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長(zhǎng)分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個(gè)正數(shù)滿足,則的取值范
2025-07-24 12:58