【摘要】長春工業(yè)大學(xué)碩士學(xué)位論文分碩士學(xué)位論文基于FPGA的MACRO運動控制網(wǎng)絡(luò)的研究及實現(xiàn)ResearchandRealizationofMACROMotionControlNetworkbasedonFPGAIV摘要圖像去噪是圖像處理中一項最基本的課題,在圖像的采集、獲取
2025-06-22 01:10
【摘要】微分方程數(shù)值解法實驗報告姓名:班級:學(xué)號:一:問題描述求解邊值問題:其精確解為問題一:取步長h=k=1/64,1/128,作五點差分格式,用Jacobi迭代法,Gauss_Seidel迭代法,SOR 迭代法(w=)。求解差分方程,以前后兩次重合到小數(shù)點后四位的迭代值作為解的近似值,比較三
2025-07-21 17:34
【摘要】數(shù)學(xué)與計算科學(xué)學(xué)院實驗報告實驗項目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實驗類型驗證性實驗日期20
2025-07-24 00:27
【摘要】第三章微分方程模型一、微分方程知識簡介我們要掌握常微分方程的一些基礎(chǔ)知識,對一些可以求解的微分方程及其方程組,要求掌握其解法,并了解一些方程的近似解法。微分方程的體系:(1)初等積分法(一階方程及幾類可降階為一階的方程)(2)一階線性微分方程組(常系數(shù)線性微分方程組的解法)(3)高階線性微分方程(高階線性常系數(shù)微分方程解法)。其中還包括了常微分方程的基本定理。
2025-06-24 22:55
【摘要】課程設(shè)計說明書課程名稱:數(shù)值計算與算法設(shè)計課程設(shè)計題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級:_應(yīng)用數(shù)學(xué)2005-2學(xué)號:_200513794_學(xué)生姓名:__儲素霞__指導(dǎo)教師:__許峰___2008年7月11日安徽理工大學(xué)課程
2025-01-16 14:12
【摘要】課程設(shè)計說明書(論文)第I頁常微分方程組初值問題數(shù)值解的實現(xiàn)和算法分析摘要本次課程設(shè)計主要內(nèi)容是用改進(jìn)Euler方法和四階Runge-Kutta方法解決常微分方程組初值問題的數(shù)值解法,通過分析給定題目使用Matlab編寫程序計算結(jié)果并繪圖然后區(qū)別兩種方法
2025-01-11 03:32
【摘要】常微分方程組初值問題數(shù)值解的實現(xiàn)和算法分析摘要本次課程設(shè)計主要內(nèi)容是用改進(jìn)Euler方法和四階Runge-Kutta方法解決常微分方程組初值問題的數(shù)值解法,通過分析給定題目使用Matlab編寫程序計算結(jié)果并繪圖然后區(qū)別兩種方法的使用范圍。最后對計算結(jié)果進(jìn)行分析,得到結(jié)論。關(guān)鍵詞:改進(jìn)Euler,Runge-Kutta,初值問題目錄1前言 12題目敘述
2025-06-28 14:28
【摘要】課程設(shè)計說明書課程名稱:數(shù)值計算與算法設(shè)計課程設(shè)計題目:導(dǎo)彈追蹤微分方程模型的數(shù)值解法院系:理學(xué)院_專業(yè)班級:_應(yīng)用數(shù)學(xué)2021-2學(xué)號:_202113794_學(xué)生姓名:__儲素霞__指導(dǎo)教師:__許
2025-06-07 13:47
【摘要】演示課件之三微分方程解的性態(tài)演示實驗一、Lorenz微分方程模型實驗?zāi)康淖寣W(xué)生觀察常微分方程組解的某些特征,從而揭示其中的數(shù)學(xué)規(guī)律和奧妙!著名的Lorenz微分方程模型:假定參數(shù)分別取值為:β=8/3,σ=10,ρ=28
2025-09-25 14:58
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】常微分方程初值問題的數(shù)值解法第6章引言在實際問題中,常需要求解微分方程(如發(fā)電機(jī)轉(zhuǎn)子運動方程)。只有簡單的和典型的微分方程可以求出解析解,而在實際問題中的微分方程往往無法求出解析解。常微分方程:????????0)(),(yaybxayxfy-(1)??????????
2025-05-15 07:53
【摘要】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實際的重要渠道之一,也是其它數(shù)學(xué)分支的一個綜合應(yīng)用場所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟(jì)學(xué))推
2025-08-22 20:44
【摘要】機(jī)動目錄上頁下頁返回結(jié)束高階線性微分方程解的結(jié)構(gòu)第七節(jié)二、線性齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu)一、二階線性微分方程舉例第十二章n階線性微分方程的一般形式為方程的共性為二階線性微分方程.例1例2,)()()(xfyxqyxpy?
2025-05-10 16:10
【摘要】用分離變量法解常微分方程重慶師范大學(xué)涉外商貿(mào)學(xué)院數(shù)學(xué)與數(shù)學(xué)應(yīng)用(師范)2012級3班鄧海飛指導(dǎo)教師申治華摘要變量可分離的方程是常微分中一個基本的類型,分離變量法是解決微分方程的初等解法。本文研究了變量分離方程的多種類型和解法,通過適當(dāng)?shù)淖兞刻鎿Q把方程化為變量分離方程,例如齊次方程、線性方程、Riccati方程。并且通過相應(yīng)的例題具體演繹分離變量法解微分方程。最后本文
2025-08-05 01:06
【摘要】微分方程的基礎(chǔ)知識與練習(xí)(一)微分方程基本概念:首先通過一個具體的問題來給出微分方程的基本概念。(1)一條曲線通過點(1,2),且在該曲線上任一點M(x,y)處的切線的斜率為2x,求這條曲線的方程。 解(1)同時還滿足以下條件:時,(2) 把