【摘要】文科數(shù)學(xué)立體幾何大題題型題型一、基本平行、垂直1、如圖,在四棱臺中,平面,底面是平行四邊形,,,60°.(Ⅰ)證明:;(Ⅱ)證明:.2.如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且.分別為和的中點.(1)證明:平面;(2)證明:平面平面;(3)求四棱錐的體積.
2025-04-17 13:17
【摘要】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【摘要】2015年高考立體幾何大題試卷1.【2015高考新課標(biāo)2,理19】如圖,長方體中,,,,點,分別在,上,.過點,的平面與此長方體的面相交,交線圍成一個正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);(Ⅱ)求直線與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【摘要】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2025-08-13 17:46
【摘要】高中數(shù)學(xué)精講精練第七章立體幾何初步【知識圖解】【方法點撥】立體幾何研究的是現(xiàn)實空間,認識空間圖形,可以培養(yǎng)學(xué)生的空間想象能力、推理論證能力、運用圖形語言進行交流的能力以及幾何直觀能力。空間的元素是點、線、面、體,對于線線、線面、面面的位置關(guān)系著重研究它們之間的平行與垂直關(guān)系,幾何體著重研究棱柱、棱錐和球。在復(fù)習(xí)時我們要以下幾點:1.注意
2025-08-20 20:20
【摘要】成人高考高升專英語解題技巧?一、試卷分析???成人高考高升專英語科滿分150分,試卷易中難按照5:4:1比列科學(xué)分布。具體分值細分如下:題號題目分值一、語音題(,共5題,)1.?元音的發(fā)音2.?
2025-04-17 01:21
【摘要】高考模擬試題分類解析—立體幾何1.(2007年安徽宿州第二次質(zhì)量檢測文9)設(shè)l,m,n表示三條直線,表示三個平面,①若m,n是l在內(nèi)的射影,m⊥l,則m⊥n②若m⊥,n∥且∥,則m⊥n③若⊥,⊥,則∥④若l⊥,m⊥則l∥m其中正確命題的個數(shù)是
2025-01-14 15:14
【摘要】高中英語閱讀理解解題技巧摘要:本文在借鑒有關(guān)高中英語閱讀教學(xué)理論的基礎(chǔ)上,結(jié)合自己的教學(xué)實踐,對高考英語閱讀理解題的命題特點、解題思路、答題技巧、備考建議和注意事項方面進行了探討。關(guān)鍵詞:高中英語閱讀理解命題特點解題思路解題技巧備考建議注意事項閱讀理解是高中英語考試的重要組成部分,在高考中所占分值最大,也是英語考試中的難點。英語閱讀理解著重考查學(xué)生獲取、分析和
2025-08-05 18:42
【摘要】高考數(shù)學(xué)解題技巧知識大全第一部分高中數(shù)學(xué)活題巧解方法總論一、代入法若動點依賴于另一動點而運動,而點的軌跡方程已知(也可能易于求得)且可建立關(guān)系式,,于是將這個點的坐標(biāo)表達式代入已知(或求得)曲線的方程,化簡后即得點的軌跡方程,這種方法稱為代入法,又稱轉(zhuǎn)移法或相關(guān)點法?!纠?】(2009年高考廣東卷)已知曲線:與直線:交于兩點和,且,記曲線C在點A和點B之間那一段L與線
2025-01-18 08:29
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-05 09:40
【摘要】立體幾何四大綜合類型向量的常用方法:①利用法向量求點到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點B到平面的距離為.②.異面直線間的距離(是兩異面直線,其公垂向量為,分別是上任一點,為間的距離).③.直線與平面所成角(為平面的法向量).④.利用法向量求二面角的平面角定理
2025-07-24 12:09
【摘要】詩歌鑒賞解題技巧?1、《考試說明》要求:?(1)、鑒賞文學(xué)作品的形象、語言和表達技巧;?(2)、評價文學(xué)作品的思想內(nèi)容和作者的觀點、態(tài)度。一、考點精講2、題型特點預(yù)測:?角度小巧?指向明確?限制中定向開放閱讀下面一首詩,然后回答問題。(6分)
2024-11-18 22:37
【摘要】解析幾何大題的解題技巧(只包括橢圓和拋物線)。一、設(shè)點或直線做題一般都需要設(shè)點的坐標(biāo)或直線方程,其中點或直線的設(shè)法有很多種。直線與曲線的兩個交點一般可以設(shè)為(x1,y1),(x2,y2),等。對于橢圓上的唯一的動,還可以設(shè)為,在拋物線上的點,也可以設(shè)為。還要注意的是,很多點的坐標(biāo)都是設(shè)而不求的。對于一條直線,如果過定點(x0,y0)并且不與y軸平行,可以設(shè)點斜式y(tǒng)-y0=k
2025-08-09 15:40
【摘要】 知識點:二面角的求法一、思想方法求二面角的大小,是立體幾何計算與運用中的一個重點和難點.直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點在兩個面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-25 06:41