【摘要】排列組合題型總結(jié)一.直接法1.特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。二.間接法當(dāng)直接法求解類別比較大時(shí),應(yīng)采用間接法。例2有五張卡片,它的正反面分別寫0與1,2與3,4與
2025-03-26 00:39
【摘要】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫廊展開10幅不同的畫,
2024-11-10 22:56
【摘要】排列組合中的分堆問題平均分組問題理論部分:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以A(m,m),即m!,其中m表示組數(shù)。例如把a(bǔ)bcd分成平均兩組abcdacbdadbc有_____多少種分法?C42C22A223cdbdbcadac
2024-11-09 08:09
【摘要】解排列組合的問題一般的思考過程如下:元素放進(jìn)位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個(gè)計(jì)數(shù)原理)即采取分步還是分類,或分步分類同時(shí)進(jìn)行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個(gè)元素。(4)掌握一些常用的解題策略。常用的解題策略
2025-08-15 23:54
【摘要】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-05 19:14
【摘要】;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【摘要】榆林教學(xué)資源網(wǎng)排列組合問題的20種解法排列組合問題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚怼?加法原理)完成一件事,有類辦法,在第1類辦法中有種不
2025-03-25 02:37
【摘要】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個(gè)數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個(gè)數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【摘要】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識(shí)1:知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2024-11-11 02:53
【摘要】2010年高考真題排列組合一、選擇題:1.(2010年高考山東卷理科8)某臺(tái)小型晚會(huì)由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在第四位、節(jié)目乙不能排在第一位,節(jié)目丙必須排在最后一位,該臺(tái)晚會(huì)節(jié)目演出順序的編排方案共有(A)36種 (B)42種 (C)48種 (D)54種【答案】B【解析】分兩類:第一類:甲排在第一位,共有種排法;第二類:甲排在第二
2025-08-05 06:31
【摘要】遼寧省示范性高中瓦房店市第八高級(jí)中學(xué)高(三)(數(shù)學(xué)組)班級(jí):姓名:學(xué)號(hào):2013年12月6日
2025-08-05 06:17
【摘要】排列組合公式復(fù)習(xí)排列與組合 考試內(nèi)容:兩個(gè)原理;排列、排列數(shù)公式;組合、組合數(shù)公式?! 】荚囈螅?)掌握加法原理及乘法原理,并能用這兩個(gè)原理分析和解決一些簡單的問題?! ?)理解排列、組合的意義。掌握排列數(shù)、組合數(shù)的計(jì)算公式,并能用它們解決一些簡單的問題?! ≈攸c(diǎn):兩個(gè)原理尤其是乘法原理的應(yīng)用?! ‰y點(diǎn):不重不漏?! ≈R(shí)要點(diǎn)及典型例
2025-03-24 12:35
【摘要】高二十班解排列組合復(fù)習(xí):題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()D、24種解析:把視為一人,且固定在的右邊,則本題相當(dāng)于4人的全排列,種,答案:.:元素相離(即不相鄰)問題,可先把無位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.,如果甲乙兩個(gè)必須不相
2025-08-17 04:20
【摘要】排列組合應(yīng)用題解法綜述計(jì)數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯(cuò)誤較難自檢發(fā)現(xiàn)。因而對這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【摘要】基本知識(shí)排列與元素的順序有關(guān),組合與順序無關(guān).如231與213是兩個(gè)排列,2+3+1的和與2+1+3的和是一個(gè)組合.(一)兩個(gè)基本原理是排列和組合的基礎(chǔ)(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法.(2)乘
2025-08-05 08:17