【摘要】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2024-08-10 14:23
【摘要】第一章解三角形(復(fù)習(xí)課)BCAabc思考1:何謂解三角形?一般地,把三角形的三個角A,B,C,及其對邊a,b,c叫做三角形的元素。已知三角形的幾個元素求其他元素的過程叫解三角形。BCAabc思考2:如何判斷兩個三角形全等?思考3:三角形中角
2024-08-14 18:44
【摘要】1.如圖1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2cm,則點D到BC的距離為________cm.圖1圖22.如圖2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分線,交AC于D,若CD=n,AB=m,則ΔABD的面積是()A.B.C.mn D.2mn3.如圖,在
2025-03-24 05:44
【摘要】第八單元 平面向量與解三角形(120分鐘 150分)第Ⅰ卷一、選擇題:本大題共12小題,每小題5分,,只有一項是符合題目要求的. △ABC的三內(nèi)角A、B、C所對邊的長分別為a、b、c,若2csinB=b,則角C的大小為 C. D.解析:由正弦定理得2sinB
2024-08-14 05:48
【摘要】WORD完美格式1.(2013大綱)設(shè)的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設(shè)△的內(nèi)角所對的邊分別為,且,,.(Ⅰ)求的值;(Ⅱ)求的值.4
2024-08-14 15:44
【摘要】........歷屆高考中的“解三角形”試題精選(自我測試)一、選擇題:(每小題5分,計40分)1.(2008北京文)已知△ABC中,a=,b=,B=60°,那么角A等于()(A)135° (B)90°
2025-04-17 12:34
【摘要】《解三角形》一、正弦定理:=2R推論:(1)(2)a=2RsinAb=2RsinBc=2RsinC(3)1.在△中,若,則=2.在△中,b=6,A=300,則B=3.【2013山東文】在中,若滿足,,,則4.【2010山東高考填空1
2025-04-09 07:07
【摘要】解三角形習(xí)題精講精練.1在中,若,,,則( )A. B.C. D.2在等腰三角形ABC中,已知sinA∶sinB=1∶2,底邊BC=10,則△ABC的周長是。3在△ABC中,A=60°,B=45°,,則a=;b=4△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠
2025-06-07 22:03
【摘要】........解三角形高考真題(一) 一.選擇題(共9小題)1.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,則C=( )A. B. C. D.2.在ABC中,角A,B,C的對
【摘要】2011年全國各地100份中考數(shù)學(xué)試卷分類匯編第30章解直角三角形一、選擇題1.(2011湖北武漢市,10,3分)如圖,鐵路MN和公路PQ在點O處交匯,∠QON=30°.公路PQ上A處距離O點240米.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以72千米/時的速度行駛時,A處受噪音影響的時間為?A.12秒.&
2024-08-13 07:44
【摘要】解三角形高考大題,帶答案1.(寧夏17)(本小題滿分12分)BACDE如圖,是等邊三角形,是等腰直角三角形,,交于,.(Ⅰ)求的值;(Ⅱ)求.解:(Ⅰ)因為,,所以.所以. 6分(Ⅱ)在中,,由正弦定理.故. 12分2.(江蘇17)(14分)某地有三家工廠,分別位于矩形ABCD的頂點A、B及CD的中點P處,已知AB=20k
2025-06-18 18:56
2025-06-18 19:33
【摘要】........專題精選習(xí)題----解三角形1.在中,內(nèi)角的對邊分別為,已知.(1)求的值;(2)若,求的面積.2.在中,角的對邊分別是,已知.(1)求的值;(2)若,求邊的值.
2025-04-17 13:17
【摘要】解三角形復(fù)習(xí)【知識梳理】1、正弦定理:在中,、、分別為角、、的對邊,為的外接圓的半徑,則有.2、正弦定理的變形公式:①,,;②,,;③;④.:①已知三角形的任意兩角及其一邊可以求其他邊,如;(唯一解)②已知三角形的任意兩邊與其中一邊的對角可以求其他角的正弦值,如。(一解或兩解)4、三角形面積公式:.5.余弦定理:形式一:,
2025-04-17 01:18
【摘要】作業(yè)布置評價小結(jié)鞏固練習(xí)講授新課復(fù)習(xí)判定兩個三角形全等要具備什么條件?
2024-11-09 03:54