【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【摘要】主要內(nèi)容回顧一、上、下凸區(qū)間的判定二階導(dǎo)數(shù)為0的點及二階導(dǎo)數(shù)不存在的點;二、拐點的計算:曲線上的點;三、漸近線的計算思考:曲線的漸近線有幾條?11xxye????§曲線的曲率一、弧微分曲線弧長的微分稱為
2025-07-24 06:10
【摘要】微積分在物理學上的應(yīng)用1引言微積分是數(shù)學的一個基本學科,內(nèi)容包括微分學,積分學,極限及其應(yīng)用,其中微分學包括導(dǎo)數(shù)的運算,因此使速度,加速度等物理元素可以使用一套通用的符號來進行討論。而在大學物理中,使用微積分去解決問題是及其普遍的。對于大學物理問題,可是使其化整為零,將其分成許多在較小的時間或空間里的局部問題來進行分析。只要這些局部問題分的足夠小,足以使用簡單,可研究的方法來
2025-04-04 02:24
【摘要】高等數(shù)學電子教案第6章定積分及其應(yīng)用定積分起源于求圖形的面積和體積等實際問題。微積分是一種數(shù)學思想,“無限細分”就是微分,“無限求和”就是積分。無限就是極限,極限的思想是微積分的基礎(chǔ)?!盁o限細分,無限求和”的積分思想在古代就已經(jīng)萌牙.最早可以追溯到希臘由阿
2025-07-20 12:23
【摘要】2022/8/261第十章定積分應(yīng)用0xyay=f(x)bx+dxx2022/8/262定積分概念的出現(xiàn)和發(fā)展都是由實際問題引起和推動的。因此定積分的應(yīng)用也非常廣泛。本書主要介紹幾何、物理上的應(yīng)用問題,例如:平面圖形面積,曲線弧長,旋轉(zhuǎn)體體積,水壓力,抽水做功,引力等。第一節(jié)定積分的
2025-08-05 07:29
【摘要】畢業(yè)論文題目微積分在高中數(shù)學中的應(yīng)用學院數(shù)學與統(tǒng)計學院專業(yè)數(shù)學與應(yīng)用數(shù)學研究類型研究綜述提交日期2020-5-10
2025-08-19 10:49
【摘要】1第七節(jié)定積分的物理應(yīng)用一、變力沿直線作功二、液體對薄板的側(cè)壓力第五章三、引力(自學)2設(shè)物體在連續(xù)變力F(x)作用下沿x軸從x=a移動到力的方向與運動方向平行,求變力所做的功。xabxxxd?在其上所作的功元素為xxFWd)(d?因此變力F(
2025-01-13 21:35
【摘要】定積分的應(yīng)用習題課例1如圖,曲線y=x2(x≥0)與切線l及x軸所圍成圖形的面積為,求切線l的方程.112y=2x-1xyOlBCAy=x2例2設(shè)動拋物線y=ax2+bx(a<0,b>0)與x軸所圍成圖形的面積為S,若該拋物線與直線x+y
2024-11-12 17:13
【摘要】回顧曲邊梯形求面積的問題?=badxxfA)(一、問題的提出曲邊梯形由連續(xù)曲線)(xfy=)0)((?xf、x軸與兩條直線ax=、bx=所圍成。abxyo)(xfy=abxyo)(xfy=iinixfA?=?=?)(lim10??
2025-04-29 05:41
【摘要】定積分的簡單應(yīng)用定積分在幾何中的應(yīng)用??badxxfA)(???badxxfxfA)]()([12:()()|()()bbaafxdxFxFbFa????[其中F′(x)=f(x)]xyo)(xfy?abAxyo)(1xfy?
2025-04-29 05:34
【摘要】定積分的概念f(x)在區(qū)間[a,b]上連續(xù),用分點將區(qū)間[a,b]等分成n個小區(qū)間,在每個小區(qū)間上任取一點ξi(i=1,2,…,n),作和式①_____________,當n→∞時,上述和式無限接近于某個常數(shù),這個常數(shù)叫做函數(shù)f(x)在區(qū)間[a,b]上的②________,記作
2024-11-18 12:13
【摘要】畢業(yè)論文題目微積分在高中數(shù)學中的應(yīng)用學院數(shù)學與統(tǒng)計學院專業(yè)數(shù)學與應(yīng)用數(shù)學研究類型研究綜述原創(chuàng)性聲明本人
2025-08-19 10:52
【摘要】定積分的應(yīng)用習題課例1如圖,曲線y=x2(x≥0)與切線l及x軸所圍成圖形的面積為,求切線l的方程.112y=2x-1xyOlBCAy=x2例2設(shè)動拋物線y=ax2+bx(a<0,b>0)與x軸所圍成圖形的面積為S,若該拋物線與直線x+y=4相
2024-11-09 23:27
【摘要】定積分的物理應(yīng)用復(fù)習微元法一、非均勻細桿的質(zhì)量二、變力沿直線所作的功三、液體的側(cè)壓力四、引力問題微元法的步驟和關(guān)鍵:復(fù)習微元法(定積分概念的一個簡化)非均勻分布在區(qū)間[a,b]上的所求總量A分割成分布在各子區(qū)間的局部量,........A必須對區(qū)間[a,b]具有可加
2025-04-29 00:55
【摘要】.⌒弧長⌒⌒oxyxyo作業(yè)習題九(P199)1(2)(3)(6);2。
2025-04-28 23:18