【正文】
數(shù)名稱的轉(zhuǎn)化; ② 誘導(dǎo)公式及和、差角的三角函數(shù) —— 可實(shí)現(xiàn)角的形式的轉(zhuǎn)化 .在應(yīng)用公式時(shí)要注意它的逆向變換、多向變換,即對(duì)公式要 “ 三會(huì) ” :正用、逆用、變用 .要注意通過拆角、拼角的技巧用已知角表示未知角 . 167。s i n3c o s3:)1(6?????求值化簡(jiǎn)化簡(jiǎn)例xxxx.: 構(gòu)造輔助角分析167。 、余弦、正切 (4) ???? 80s i n2)]10tan31(10s i n50s i n2[:.11 2???求值例.,90,60,80,10,50:式求其三角函數(shù)值故可考慮逆用兩角和公殊角卻是特但其和都不特殊角分析 ?????.660s i n22)10s i n50c o s10c o s50( s i n2210c o s2)10c o s)1060c o s (210s i n50s i n2(80s i n2)10c o s10s i n310c o s10s i n50s i n2(:????????????????????????????原式思路一.610c o s2)10c o s50c o s210s i n50s i n2(10c o s2])1060t a n ()10t a n60t a n10s i n50s i n2[80s i n2)]10t a n60t a n1(10s i n50s i n2[:????????????????????????????????原式思路二167。)(2: ????????? ???????分析.)4c o s (2c o s:,40,135)4s i n (.18的值求已知例xxxx????????1324)4c o s (2c o s).4(24)。 、余弦、正切 (4) 綜合訓(xùn)練題 .2t a n2t a n32t a n2t a n,.15的值求成等差數(shù)列已知在例CACACBAABC???.32t an2t an32t an2t an,3)22t an (,322,:?