freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

模糊控制器設(shè)計(jì)外文資料翻譯--離散模糊雙線性系統(tǒng)的靜態(tài)輸出反饋控制(存儲(chǔ)版)

  

【正文】 矩陣0, ,iQ F i I??滿足下面線性矩陣不等式( 17),則 DFBS( 5)是漸近穩(wěn)定的。 1 qiFR?? 是待定的控制器增益, 0?? 是待求的標(biāo)量。 ,i i iA B N 是已知合適維數(shù)的系統(tǒng)矩陣。這種方法不要求系統(tǒng)的輸出矩陣相同,也不需要相似轉(zhuǎn)換。 雙線性系統(tǒng)是一類比較特殊的非線性系統(tǒng),它的模型比一般的非線性系統(tǒng)模型結(jié)構(gòu)簡(jiǎn)單,描述對(duì)象的近似程度比線性系統(tǒng)模型要高的多 [11][13]。使用并行分布補(bǔ)償算法(PDC),得到了閉環(huán)系 統(tǒng)漸近穩(wěn)定的充分條件,并把這些條件轉(zhuǎn)換成線性矩陣不等式 (LMI)的形式,使得模糊控制器可以由一組線性矩陣不等式的解得到。 fuzzy control。輸出反饋控制直接利用系統(tǒng)的輸出量來(lái)設(shè)計(jì)控制器,不用考慮系統(tǒng)狀態(tài)是否可測(cè)可觀,而且靜態(tài)輸出反饋控制器結(jié)構(gòu)簡(jiǎn)單,因此具有良好的應(yīng)用價(jià)值。但是上述結(jié)果都是連續(xù)時(shí)間系統(tǒng)并且是基于狀態(tài)反饋控制器的,目前還沒(méi)有關(guān)于離散模糊雙線性系統(tǒng)( DFBS)靜態(tài)輸出反饋控制的文獻(xiàn)。 如果不做特別說(shuō)明,矩陣均表示合適維數(shù)的矩陣。由 ( ())ih yt 的定義可知: ( ( )) 0ih y t ? 和 1 ( ( )) 1s ii h y t? ?? , iI? 。 證明: 選取如下 Lyapunov 函數(shù): ( ) ( ) ( )TV t x t Px t? ( 8)其中: 0P? 是待求的正定對(duì)稱矩陣。 。最后,由數(shù)例仿真驗(yàn)證了結(jié)果的有效性。 。 考慮( 7)是雙線性矩陣不等式,為求解控制器,下面提出一個(gè)新的方法把BMI 轉(zhuǎn)換成 LMI 形式。 根 據(jù) 并 行 分 布 補(bǔ) 償 算 法 , 考 慮 靜 態(tài) 輸 出 反 饋 控 制 器 :11 ( ) .. . ( )() ( ) ,1i i ivviTTiiR if y t is M a n d a n d y t is MF y tthe n u t i Iy F F y???? ( 3) 則整個(gè)系統(tǒng)的狀態(tài)反饋控制律可表示為: 1 1 1()( ) s in c o s ( )1s s sii i i i i ii i iTT iiF y tu t h h h F y ty F F y? ? ? ? ?? ? ?? ? ??? ? ? ( 4)這里:() 1s in , c o s , , [ , ]2211ii i iT T T Ti i i iF y t iIy F F y y F F y ??? ? ?? ? ? ? ???。( ) ,nxt R? ( ) , ( )mqu t R y t R??分別是狀態(tài)變量 、控制輸入和 測(cè)量輸出 。給出了系統(tǒng)漸近穩(wěn)定的充分條件,并把這種條件轉(zhuǎn)換成 LMIs 形式,使模糊控制器可以通過(guò)求解 LMI 而得到。但是上述結(jié)果所得到的條件常常是雙線性矩陣不等式 (BML),為了化成線性矩陣不等式( LMI)求解,需引入了相似變換或是要求所有的輸出矩陣 yiC 全部相同,這樣的 結(jié)果往往具有很強(qiáng)的保守性。 that is, the static output controller for fuzzy rule i is written as 11TT ( ) ... ( ) ( ) ( ) / 1i i v v ii i iR if y t is M and and y t is Mthe n u t F y t y F F y??? (3)Hence, the overall fuzzy control law can be represented as 1 1 1()( ) s in c o s ( )1s s sii i i i i ii i iTT iiF y tu t h h h F y ty F F y? ? ? ? ?? ? ?? ? ??? ? ? (4) Where T T T T() 1s in , c o s , [ , ] , 1 , 2 , . . . ,2211ii i ii i i iF y t isy F F y y F F y ??? ? ?? ? ? ? ???.1 qiFR?? is a vector to be determined and 0?? is a scalar to be assigned. By substituting (4) into (2), the closedloop fuzzy systems can be represented as , , 11( 1 ) ( )( ) ( )si j l ijli j lsiiix t h h h x ty t h C x t??? ? ???? (5) where c os si nij l i i j l j i jA B F C N? ? ? ?? ? ? ?. The objective of this paper is to design fuzzy controller (4) such that the DFBS (5) is asymptotically stable. 3 Main results Now we introduce the following Lemma which will be used in our main results. Lemma 1 Given any matrices ,MNand 0P? with appropriate dimensions such that 0?? , the inequality T T T 1 TM PN N PM M PM N PN?? ?? ? ?holds. Proof: Note that 1 1 1 12 2 2 2( ) ( ) ( ) ( )T T T TM P N N P M P M P N P N P M? ? ? Applying Lemma 1 in [1]: 1T T T TM N N M M M N N?? ?? ? ?, the inequality T T T 1 TM PN N PM M PM N PN?? ?? ? ?can be obtained. hus the proof is pleted. Theorem 1 For given scalar 0?? and 0, , 1,2,...,ij i j s? ??, the DFBS (5) is asymptotically stable in the large, if there exist matrices 0Q? and , 1,2,...,iF i s? satisfying the inequality (6). T T T111()00 00 , , 1 , 2 , ...,i i i j lijlQ Q A Q N B F C QaQbQbQi j l s??????????? ? ?? ? ?? ? ? ???? (6) Where 211 , (1 )ij ijab? ? ? ?? ? ? ?. Proof: Consider the Lyapunov function candidate as T( ) ( ) ( )V t x t Px t? (7) where 1PQ?? is to be selected. Define the difference ( ) ( 1) ( )V t V t V t? ? ? ?, and then along the solution of (5), we have T T T, , 1 , , 1T T T T12, , 1 , , 1T T T, , 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ssi j l m n p ijl m npi j l m n pssi j l m n p ijl m np ijl m npi j l m n psi j l ijl ijli j lV t h h h h h h x t P x t x t Px th h h h h h x t P P x t x t Px th h h x t P x t x t P?????? ? ? ? ?? ? ? ? ? ? ?? ? ? ?????? ()xt (8) Applying Lemma 1 again, it follows that TTT 2 1 T T( c o s si n ) ( c o s si n ) ( 1 ) ( 1 ) [ ( ) ( ) ]ij l ij l i i j l j i j i i j l j i jij i i ij i j l i j l i iP A B F C N P A B F C NA PA B F C P B F C N PN? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ? ? ?? ? ? ? ? (9) Substituting (9) into (8) leads to T T T T, , 1( ) ( ) [ ( ) ( ) ] ( )s i j l i i i j l i j l i ii j lV t h h h x t a A P A b B F C P B F C b N P N P x t?? ? ? ? ?? (10) Applying the Schur plement, (6) is equivalent to T 1 T 1 T 1( ) ( Q ) 0i i i j l i j l i iQ aQ A Q A Q b B F C Q Q B F C bQ N Q N Q? ? ?? ? ? ? ? (11) Pre and post multiplying both side of (11) withP , respectively, we have T T T( ) ( ) 0i i i j l i j l i iP a A P A b B F C P B F C b N P N? ? ? ? ? (12) Therefore, it is noted that ( ) 0Vt??, then the DFBS (5) is asymptotically stable. Thus the proof is pleted. The matrix inequality (6) leads to BMI optimization, a nonconvex programming problem. In the following theorem, we will derive a sufficient condition such that the mat
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1