【正文】
ij l m n p ij l m n p ij l ij l m n p m n pP P P P? ? ? ? ? ? ? ? ? ? ? ( 10) 把 ( 10 )帶入( 9 ) 中 , 可 以 得 到 :, , 1( ) ( ) ( ) ( ) ( )s T T Ti j l ijl ijli j lV t h h h x t P x t x t P x t?? ? ? ? ?? ( 11) 考慮: ( c os si n ) ( c os si n )( c os ) ( c os ) ( si n ) ( si n ) ( c os ) ( si n ) ( si n ) ( c os ) TTijl ijl i i j l j i j i i j l j i jT T T Ti i i j l j i i i j l j i j iT T Ti i j i j l j i j i j i j l jP A B F C N P A B F C NA PA B F C PA A P B F C N PAA P N B F C P N N P B F C? ? ? ? ? ? ? ?? ? ? ? ? ?? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ?? ? ?2 2 2 2c os ( ) ( ) si nTTj i j l i j l j i iB F C P B F C N PN? ? ? ??? ( 12) 由引理 1 可知: 2 2 12 2 1( c os ) ( c os ) c os ( ) ( ) ,( si n ) ( si n ) si n ,( c os ) ( si n ) ( si n ) ( c os ) T T T Ti j l j i i i j l j ij j i i ij i j l i j lT T T Ti j i i i j ij j i i ij i iTTi j l j i j i j i j l jB F C PA A P B F C A PA B F C P B F CN PA A P N A PA N PNB F C P N N P B F C? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ???? ? ?? ? ??2 2 2 2 si n ( ) ( ) c os .TTj i j l i j l j i iB F C P B F C N PN? ? ? ??? ( 13) 把( 13)帶入( 11)式,可得: , , 1( ) ( ) ( ( ) ( ) ) ( )s T T T Ti j l i i i j l i j l i ii j lV t h h h x t a A P A b B F C P B F C b N P N P x t?? ? ? ? ?? ( 14) 根據(jù) Schur 補(bǔ)定理,( 7)等價于: 1 1 1( ) ( Q ) 0T T Ti i i j l i j l i iQ aQ A Q A Q b B F C Q Q B F C bQ N Q N Q? ? ?? ? ? ? ? ( 15) 對( 15)分別左、右乘 P 且 1PQ?? ,則可知: ( ) ( ) 0T T Ti i i j l i j l i iP a A P A b B F C P B F C b N P N? ? ? ? ? ( 16) 從而可知 ( ) 0Vt??,所以可知系統(tǒng)( 5)是漸近穩(wěn)定的。 111111( ) ( ) 0 0 0()000000( ) ( )()0000 00TT T Tlli i i j lijl ijlTi j i jTTTliiijC Q C Q A Q N B F C QIaQIbQB F B FbQC Q A Q Na Q Ib Q IBFbQ???????????????????? ? ? ???? ? ?????? ? ?? ? ? ??? ?????????? ? ? ???? ? ? ???? ? ? ??? ?0 0 ( )Tl i jC Q B F??? ?????????? ?( 19) 由 Schur 補(bǔ)定理可知:( 17)式等價于 0ijl ijl?? ? ? ,進(jìn)一步可以得 0ijl??。 。 0 5 10 15 20 25 30 35 40 45 50 1 . 51 0 . 500 . 511 . 5時間 t ( S e c )x1系統(tǒng)的狀態(tài)響應(yīng)0 5 10 15 20 25 30 35 40 45 502 1 . 51 0 . 500 . 51時間 t ( S e c )x2系統(tǒng)的狀態(tài)響應(yīng) 圖 1:系統(tǒng)分別在初始狀態(tài): [ ](實(shí)線)、 [ ](長劃線)下的狀態(tài)響應(yīng)曲線 0 5 10 15 20 25 30 35 40 45 50 2 . 52 1 . 51 0 . 500 . 511 . 5時間 t ( S e c )控制器 u 輸出 圖 2:系統(tǒng) 分別在初始狀態(tài): [ ](實(shí)線)、 [ ](長劃線)下的控制曲線 4 結(jié)論 本文對一類用 TS 模型表示的 DFBS 研究了靜態(tài)輸出反饋控制問題。 參考文獻(xiàn): [1] and Souza, Delayeddependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach [J]..IEEE Trans. Auto. Cont., 1997, 42(9):11441148 [2] and , Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach [J]. IEEE Trans. Fuzzy Syst., 2020, 18(2): 200211. [3] , Robust stability and stabilization for uncertain TakagiSugeno fuzzy timedelay systems [J]. Fuzzy Sets and Syst., 2020, 158(4): 115134 [4] , et al, Robust H∞ fuzzy static output feedback control of TS fuzzy systems with parametric uncertainties [J]. Fuzzy Sets and Syst., 2020, 158:135146. [5] , , , et al. Static output feedback stabilization for nonlinear interval timedelay systems via fuzzy control approach [J]. Fuzzy Sets and Syst2020, 148(3): 395410. [6] , , . Su, et al. Robust static outputfeedback stabilization for nonlinear discretetime systems with time delay via fuzzy control approach[J]. IEEE Trans. Fuzzy Syst, 2020,13(2): 263272. [7] and . Delaydependent guaranteed cost control for TS fuzzy systems with time delays [J]. IEEE Trans. Fuzzy Syst., 2020, 12(2): 236249. [8] and , Robust H∞ nonlinear control via fuzzy static output feedback [J]. IEEE Trans. Circuits Syst., 2020, 50(11): 14941502. [9] and , Robust H∞ static output feedback control of fuzzy systems: an LMI approach [J]. IEEE Trans. Syst., Man, Cybern, 2020, 36: 216222. [10] and , An iterative solution to dynamic output stabilization and ments on “Dynamic output feedback controller design for fuzzy systems”[J]. IEEE Trans. Syst., Man, Cybern, 2020, 34: 679681. [11] , Nonlinear systems: Application to Bilinear control [M]. Englewood Cliffs, NJ: PrenticeHall, 1991 [12] , and Zheng Y, Global stabilization for bilinear systems with timedelay[C]. IEE Proceedings of part D: Control Theory Applications, 2020, 149(1):8994 [13] Basic M, Cannon M and Kouvaritakis B, Constrained control of SISO bilinear systems with timedelay [J]. IEEE Trans. Auto. Cont., 2020, 48(8):14431447 [14] and , TS fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems [J]. IEEE Trans. Fuzzy Syst., 2020, 3(15):494505 [15] and , Robust fuzzy control of a class of fuzzy bilinear systems with timedelay [J]. Chaos, Solitons and Fractals (2020), doi: