【摘要】絕對(duì)值不等式的解法2??????.,,,,,||;,,,,||,????????11111111即的點(diǎn)的集合數(shù)軸上到原點(diǎn)距離大于它的解集是由絕對(duì)值的幾何意義對(duì)于不等式即的點(diǎn)的集合小于點(diǎn)距離它的解集是數(shù)軸上到原幾何意義由絕對(duì)值的對(duì)于不等式我們知道xx.||;||,||,||,,
2024-11-17 17:34
【摘要】三個(gè)正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會(huì)個(gè)正數(shù)對(duì)于例如式能否推廣呢這個(gè)不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個(gè)正基本不等式思考3.,,,,,:,,,,,等號(hào)成立時(shí)當(dāng)且僅當(dāng)那么如果可能有個(gè)正數(shù)對(duì)于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2024-11-18 12:12
【摘要】不等式選講綜合測(cè)試海南李傳牛一、選擇題:本大題共12小題,每小題5分,共60分,在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若,則下列不等式中正確的是().A.B.C.D.1.D.2.設(shè),,則的大小關(guān)系是().A.B.C.D.2.B,即.通過(guò)放大分母使得分母一
2025-04-17 12:45
【摘要】4-5不等式選講練習(xí)(一)——不等式1、已知0?a,0?b則不等式bxa???1的解是()DA.bxa11???B.bxa11???C.01???xb,或ax1?D.bx1??,或ax1?2、不等式ba?和ba11
2024-12-02 10:13
【摘要】課時(shí)作業(yè)(三十九)絕對(duì)值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應(yīng)選B.2.設(shè)a,b為滿足ab<0的實(shí)
2025-08-05 15:29
【摘要】第77講不等式的證明方法1.已知x∈R,記A=x2+3,B=2x,則A與B的大小關(guān)系是()A.ABB.A≥BC.ABD.A≤BA解析:因?yàn)锳-
2025-01-08 14:10
【摘要】考情分析通過(guò)分析近三年的高考試題可以看出,不但考查用數(shù)學(xué)歸納法去證明現(xiàn)成的結(jié)論,還考查用數(shù)學(xué)歸納法證明新發(fā)現(xiàn)的結(jié)論的正確性.?dāng)?shù)學(xué)歸納法的應(yīng)用主要出現(xiàn)在數(shù)列解答題中,一般是先根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng),通過(guò)觀察項(xiàng)與項(xiàng)數(shù)的關(guān)系,猜想出數(shù)列的通項(xiàng)公式,再用數(shù)學(xué)歸納法進(jìn)行證明,初步形成“觀察—?dú)w納—猜想—證明”的思維模式;利用數(shù)學(xué)歸納法證明
2025-01-15 08:47
【摘要】思考1思考2復(fù)習(xí)引入練習(xí)答案作業(yè):課本54P6題數(shù)學(xué)歸納法證明不等式數(shù)學(xué)歸納法證明不等式(即n=n0第一個(gè)命題對(duì)應(yīng)的n的值,如n0=1)(歸納奠基);n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立(歸納遞推).數(shù)學(xué)歸納法:關(guān)于正整數(shù)n的命題(相當(dāng)于多米諾骨牌
2025-01-15 08:38
【摘要】在數(shù)學(xué)研究中,人們會(huì)遇到這樣的情況,對(duì)于任意正整數(shù)n或不小于某個(gè)數(shù)n0的任意正整數(shù)n,都有某種關(guān)系成立。對(duì)這類問(wèn)題的證明我們將使用又一種重要的數(shù)學(xué)推理方法--數(shù)學(xué)歸納法與正整數(shù)有關(guān)的命題例如:1×4+2×7+
【摘要】第一篇:2014年人教A版選修4-5教案三排序不等式 三排序不等式 教學(xué)要求:了解排序不等式的基本形式,會(huì)運(yùn)用排序不等式分析解決一些簡(jiǎn)單問(wèn)題,::: 一、復(fù)習(xí)準(zhǔn)備: :前面所學(xué)習(xí)的一些經(jīng)典不等...
2024-10-13 16:43
【摘要】2020/12/24授課人:陳曉琳2020/12/24一、知識(shí)聯(lián)系1、絕對(duì)值的定義|x|=x,x0-x,x0-x
2024-11-17 12:00
【摘要】一般形式的柯西不等式二????.,,,,,是三維的形式空間向量的坐標(biāo)是二維形式平面上向量坐標(biāo)我們知道zyxyx?,,么結(jié)論呢關(guān)于柯西不等式會(huì)有什問(wèn)題從三維的角度思考聯(lián)系前一節(jié)的內(nèi)容思考xyo???21aa,???11bb,?xyo???321aaa,,???311bbb,,?
【摘要】第一篇:高中數(shù)學(xué)選修4-5:42數(shù)學(xué)歸納法證明不等式學(xué)案 【學(xué)習(xí)目標(biāo)】 (1+x)1+nx(x-1,x10,n?N+),了解當(dāng)nn 為實(shí)數(shù)時(shí)貝努利不等式也成立 【自主學(xué)習(xí)】 (1...
2024-11-06 18:24
【摘要】對(duì)于不等式大家并不陌生,我們已經(jīng)會(huì)解一些簡(jiǎn)單的不等式和證明一些不等式,如1.求解下列不等式:①23100xx???②25xx??02.設(shè)1??n,且,1?n求證:13?nnn?2.第一講不等式和絕對(duì)值不等式(一)
2025-07-24 06:56
【摘要】第一篇:基本不等式與不等式基本證明 課時(shí)九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時(shí),關(guān)鍵在對(duì)已知條件的靈活...
2024-10-29 03:11