【摘要】,第二章函數(shù),§4二次函數(shù)性質(zhì)的再研究4.1二次函數(shù)的圖像,第一頁,編輯于星期六:點(diǎn)三十一分。,第二頁,編輯于星期六:點(diǎn)三十一分。,,自,主,探,新,知,預(yù),習(xí),第三頁,編輯于星期六:點(diǎn)三十一分。,開...
2025-10-13 18:43
【摘要】函數(shù)第二講〖〗指數(shù)函數(shù)(1)根式的概念①如果,且,那么叫做的次方根.當(dāng)是奇數(shù)時,的次方根用符號表示;當(dāng)是偶數(shù)時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號表示;0的次方根是0;負(fù)數(shù)沒有次方根.②式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù).當(dāng)為奇數(shù)時,為任意實(shí)數(shù);當(dāng)為偶數(shù)時,.③根式的性質(zhì):;當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.(2)分?jǐn)?shù)指數(shù)冪的概念①正數(shù)的正分?jǐn)?shù)指數(shù)冪的意
2025-04-17 12:41
【摘要】2014高三數(shù)學(xué)專題抽象函數(shù)特殊模型和抽象函數(shù)特殊模型抽象函數(shù)正比例函數(shù)f(x)=kx(k≠0)f(x+y)=f(x)+f(y)冪函數(shù)f(x)=xnf(xy)=f(x)f(y)[或]指數(shù)函數(shù)f(x)=ax(a0且a≠1)f(x+y)=f(x)f(y)[對數(shù)函數(shù)f(x)=logax(a0且a≠1)f
2025-04-04 02:43
【摘要】高考數(shù)學(xué)復(fù)習(xí)專題§指數(shù)與指數(shù)冪的運(yùn)算(1)根式的概念①如果,且,那么叫做的次方根.當(dāng)是奇數(shù)時,的次方根用符號表示;當(dāng)是偶數(shù)時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號表示;0的次方根是0;負(fù)數(shù)沒
2025-07-23 07:49
【摘要】高中數(shù)學(xué)函數(shù)知識點(diǎn)梳理1..函數(shù)的單調(diào)性(1)設(shè)那么上是增函數(shù);上是減函數(shù).(2)設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,則為增函數(shù);如果,則為減函數(shù).注:如果函數(shù)和都是減函數(shù),則在公共定義域內(nèi),和函數(shù)也是減函數(shù);如果函數(shù)和在其對應(yīng)的定義域上都是減函數(shù),則復(fù)合函數(shù)是增函數(shù).2.奇偶函數(shù)的圖象特征奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,偶函數(shù)的圖象關(guān)于y軸對稱;反過來,如果一個函數(shù)的圖
2025-07-20 19:49
【摘要】高中數(shù)學(xué)函數(shù)練習(xí)題1、下列函數(shù)中,值域是(0,+∞)的函數(shù)是A.B.C.D.2、已知(是常數(shù)),在上有最大值3,那么在上的最小值是 A. B. C. D.3、已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是A、[1,+∞)B、[0,
2025-04-04 05:07
【摘要】第三章基本初函數(shù)(Ⅰ)糾錯筆記考點(diǎn)例析方法指南要點(diǎn)掃描1函數(shù)的單調(diào)性??????????10.20,.3,01.,.1yxxyxyxxxx???????????????,若函的象是平行于
2025-11-08 15:11
【摘要】《思躍理科》內(nèi)部資料——總結(jié)人:liyongxybOf(x)=b常見函數(shù)性質(zhì)匯總常數(shù)函數(shù)f(x)=b(b∈R)圖象及其性質(zhì):函數(shù)f(x)的圖象是平行于x軸或與x軸重合(垂直于y軸)的直線xyOf(x)=kx+b一次函數(shù)f(x)=kx+b(k≠0,b∈R)|k|越大,圖象越陡;|k|越小,圖象越平緩;圖象及
【摘要】指數(shù)函數(shù)(二)一、基礎(chǔ)過關(guān)1.函數(shù)y=16-4x的值域是________.2.設(shè)03222??xxa的解集為________.3.函數(shù)y=ax在[0,1]上的最大值與最小值的和為3,則函數(shù)y=2ax-1在[0,1]上的最大值是_
2025-11-29 20:18
【摘要】f(x)=0有兩正根?一、二次方程ax2+bx+c=0(a0)的實(shí)根分布問題記f(x)=ax2+bx+c(a0),△=b2-4ac≥0.x1+x2=-0abacx1x2=0?△=b2-4ac≥0f(0)0.-02ab
2025-11-08 17:38
【摘要】(文)已知向量與互相垂直,其中(1)求和的值(2)若,,求的值答案:【解析】(1),,即又∵,∴,即,∴又 ,(2)∵,,即又,∴.來源:09年高考廣東卷題型:解答題,難度:容易求證:(cos108°-isin108°)(cos7
2026-01-06 09:16
【摘要】函數(shù)與方程(二)一、基礎(chǔ)過關(guān)1.設(shè)函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是不間斷的,且f(a)·f(b)0,取x0=a+b2,若f(a)·f(x0)0,則利用二分法求函數(shù)零點(diǎn)時,零點(diǎn)所在區(qū)間為__________.2.下列圖象與x軸均有交點(diǎn),其中不能用二分法求函數(shù)零點(diǎn)的是__
2025-11-29 02:38
【摘要】1二次函數(shù)知識點(diǎn)總結(jié)及相關(guān)典型題目第一部分二次函數(shù)基礎(chǔ)知識?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).?二次函數(shù)2yaxbx
2025-10-10 10:07
【摘要】集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若?A∩B,A∩C=?,求a的值.答案:由已知,得B={2,3},C={2,-4}.(1)A∩B=A
2025-07-30 00:10
【摘要】九年級下冊數(shù)學(xué)導(dǎo)學(xué)案26.1.1二次函數(shù)【學(xué)習(xí)目標(biāo)】1、能類比得出并理解掌握二次函數(shù)的概念,能判斷一個給定的函數(shù)是否為二次函數(shù)。2、根據(jù)實(shí)際問題中的條件確定二次例函數(shù)的解析式,體會函數(shù)的模型思想,會用待定系數(shù)法求簡單的二次函數(shù)的解析式。3、經(jīng)歷二次函數(shù)概念的建立過程,體會“特殊——一般——特殊”的數(shù)學(xué)思想?!緦W(xué)習(xí)重點(diǎn)】理解掌握二次例函數(shù)的概念?!緦W(xué)習(xí)過程】:[知識
2025-08-17 02:01