【摘要】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學重要內容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導思想和“在知識網絡交匯處”設計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復習參考。一、巧妙構造,利用數(shù)列的單調性例1.對任意自然數(shù)n,求證:。證明:構造數(shù)列。所以,即為單調遞增數(shù)列
2025-07-23 16:02
【摘要】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對照證題目標進行合情合理的放大和縮小的過程,在使用放縮法證題時要注意放和縮的“度”,否則就不能...
2025-10-19 05:02
【摘要】第一篇:構造法證明函數(shù)不等式 構造法證明函數(shù)不等式 1、利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點. 2、解題技巧是構造...
2025-10-18 20:30
【摘要】第一篇:不等式的證明方法探究 不等式的證明方法探究 不等式的證明是高中數(shù)學的一個難點,題型較多,涉及的知識面多,證明方法靈活,本文通過一些實例,歸納總結了證明不等式時常用的方法和技巧。 1.比較...
2025-10-19 23:37
【摘要】第一篇:不等式證明若干方法 安康學院數(shù)統(tǒng)系數(shù)學與應用數(shù)學專業(yè)11級本科生 論文(設計)選題實習報告 11級數(shù)學與應用數(shù)學專業(yè)《科研訓練2》評分表 注:綜合評分360的為“及格”; 第二篇:證...
2025-10-19 23:40
【摘要】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構造一個函數(shù)然后做差求導,確定單調性??墒沁€是一點思路...
2025-10-21 22:00
【摘要】第一篇:常用均值不等式及證明證明 常用均值不等式及證明證明 這四種平均數(shù)滿足Hn£Gn£ An£Qn L、ana1、a2、?R+,當且僅當a1=a2=L =an時取“=”號 僅是上述不等式...
2025-10-19 00:03
【摘要】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設數(shù)列{an}的前n項的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項a1與通項an...
2025-10-19 04:58
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2025-10-19 02:13
【摘要】第一篇:用向量可以證明不等式 運用向量可以證明不等式 向量一章中有兩處涉及到不等式,其一,rara+rrrb3a-b或-rrrb£a-b;其二,rragbr£arb。前者的幾何意義是三角形兩邊之和...
2025-10-26 12:20
【摘要】第一篇:基本不等式的證明 重要不等式及其應用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2025-10-18 20:07
【摘要】第一篇:比較法證明不等式 比較法證明不等式 、最重要的方法之一,它是兩個實數(shù)大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 (1)差值比較法的...
2025-10-28 07:34
【摘要】Holder不等式與Minkowski不等式的證明赫德(Holder)不等式是通過Young不等式來證明的,而閔可夫斯基(Minkowski)不等式是通過赫德(Holder)不等式來證明的.Young不等式如果x,y0?,實數(shù)p1?以及實數(shù)q?滿足1?p??+1?q??
2025-06-18 23:25
【摘要】不等式的證明(二)第二課時四川省中江中學校李和敬教學目標1.進一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學生解題時應變能力.教學重點比較法的應用教學難點常見解題技巧教學方法啟發(fā)引導式教學活動
2024-11-21 23:13
【摘要】第一篇:巧用二元均值不等式證明一組優(yōu)美不等式 巧用二元均值不等式證明不等式 江蘇省常熟市中學 査正開215500 ***zhazhengkai3@ 二元均值不等式是高中數(shù)學的重要內容,也是后...
2025-10-27 23:06