【摘要】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標(biāo)3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直
2025-03-25 06:43
【摘要】立體幾何河北高碑店一中王金民立體幾何高考命題呈如下幾個(gè)主要特點(diǎn):?(1)題型、題量和難度相對(duì)穩(wěn)定,題型一般為“二選一填一解答”或“一選一填一解答”,題量的分值基本控制在總分值的14﹪至8﹪之間,題目難度多見基本題和中檔題,難度系數(shù)一般分布在,略低于全套試題的總計(jì)難度。?(2)高考試題的命制都以柱體、錐體為載體,題
2025-11-02 05:49
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-25 03:14
【摘要】第一篇:立體幾何規(guī)范性證明 立體幾何證明規(guī)范性訓(xùn)練(1) 1、如圖,M,N,K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).(1)求證:AN//平面A1MK;(2)求證:M...
2025-10-05 09:02
【摘要】第一篇:立體幾何證明大題答案 立體幾何證明大題答案 1.(本題滿分9分) 證明: ü(1)AE=EDüyTEF//DC?AF=FCt??EF?平面BCDyTEF//平面BCD DCì平面BC...
2025-11-03 12:47
【摘要】第一篇:立體幾何復(fù)習(xí)課教學(xué)設(shè)計(jì) 立體幾何復(fù)習(xí)課 一、教學(xué)背景 幾何學(xué)是研究現(xiàn)實(shí)世界中物體的形狀、大小與位置關(guān)系的數(shù)學(xué)學(xué)科。三維空間是人類生存的現(xiàn)實(shí)空間,認(rèn)識(shí)空間圖形,培養(yǎng)和發(fā)展學(xué)生的空間想象能力...
2025-10-31 22:37
【摘要】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結(jié) 文字語(yǔ)言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個(gè)平面平行,經(jīng)...
2025-11-06 05:28
【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級(jí)位置關(guān)系判定高一級(jí)位置關(guān)系;高一級(jí)位置關(guān)系推出低一級(jí)位置關(guān)系,前...
2025-10-19 20:01
【摘要】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因?yàn)锳BCD-A1B1C1D1為長(zhǎng)方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-06-24 19:01
【摘要】第一篇:立體幾何起始課教學(xué)設(shè)計(jì) 《立體幾何起始課》教學(xué)設(shè)計(jì)北京市三里屯一中劉長(zhǎng)海 【教材分析】 立體幾何是研究三維空間中物體的形狀、大小和位置關(guān)系的一門數(shù)學(xué)學(xué)科,,學(xué)習(xí)立體幾何對(duì)我們更好地認(rèn)識(shí)、...
2025-10-26 12:26
【摘要】第一篇:立體幾何解題技巧 立體幾何解題技巧 李明健發(fā)布時(shí)間:2010-8-416:07:19 立體幾何解答題的設(shè)計(jì),注意了求解方法既可用向量方法處理,又可以用傳統(tǒng)的幾何方法解決,并且一般來說,向...
2025-11-06 05:52
【摘要】立體幾何大題題型二:翻折問題,,是的中點(diǎn),將△沿著翻折成△,使面面,分別為的中點(diǎn).(1)求三棱錐的體積;(2)證明:平面;(3)證明:平面平面.思路分析:對(duì)于翻折問題要注意翻折后的圖形與翻折前的圖形中的變與不變量.(1)求棱錐的體積一般找棱錐高易求的進(jìn)行轉(zhuǎn)換.由題意知,且,∴四邊形為平行四邊形,∴,即為等邊三角形.由面面的性質(zhì)定理,連結(jié),則,可知平面.所以即可;(2)本題
2025-07-24 12:06
【摘要】第一篇:解立體幾何方法總結(jié) 啟迪教育 解立體幾何方法總結(jié) 1坐標(biāo)系的建立: 2空間向量的運(yùn)算: 3求異面直線的夾角 4法向量的求法 5證明線面平行方法: 6求線和面的夾角 7求幾何體...
2025-11-03 18:00
【摘要】第一篇:立體幾何常見證明方法 立體幾何方法歸納小結(jié) 一、線線平行的證明方法 1、根據(jù)公理4,證明兩直線都與第三條直線平行。 2、根據(jù)線面平行的性質(zhì)定理,若直線a平行于平面A,過a的平面B與平面...
2025-11-06 05:33
【摘要】借助向量解立體幾何問題知識(shí)要點(diǎn)(其中為向量的夾角)。一、求點(diǎn)到平面的距離定義:一點(diǎn)到它在一個(gè)平面內(nèi)的正射影的距離叫做點(diǎn)到平面的距離。即過這個(gè)點(diǎn)到平面垂線段的長(zhǎng)度。一般方法:利用定義先做出過這個(gè)點(diǎn)到平面的垂線段,再計(jì)算這個(gè)垂線段的長(zhǎng)度。PBA向量法:PA
2025-10-29 01:07