【摘要】復習引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關(guān)鍵是不共線;進行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時eea??若e1、e2是同一平面內(nèi)的兩個不共線向量
2024-11-17 15:02
【摘要】北師大南山附中榮紅莉Email:平面向量的坐標運算xy0A(x,y)a《平面向量坐標運算》教學說明教材分析教法學法教學過程教學評價重點難點教學目標教材的地位和作用承上啟下;推進了立體幾何的改革;使空間結(jié)構(gòu)系
2024-11-09 00:34
【摘要】......平面向量的線性運算學習過程知識點一:向量的加法(1)定義已知非零向量,在平面內(nèi)任取一點A,作=,=,則向量叫做與的和,記作,即=+=.求兩個向量和的運算,叫做叫向量的加法.這種求向量和的方法,稱為向量加法的三角形
2025-03-25 01:22
【摘要】專題六 數(shù)列 第十八講 數(shù)列的綜合應用 一、選擇題 1.(2018浙江)已知,,成等比數(shù)列,且.若,則 A.,B.,C.,D.,2.(2015湖北)設(shè),.若p:成等比數(shù)列;q:,則 A....
2024-10-10 04:58
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-09 04:47
【摘要】1向量練習1設(shè)??20??,已知兩個向量????sin,cos1?OP,????cos2,sin22???OP,則向量21PP長度的最大值是()A新疆源頭學子小屋特級教師王新敞htp:@:/2B新疆源頭學子小屋特級教師王新敞htp:@:/3C新疆源頭學子小屋特
2025-01-08 20:35
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流平面向量一、選擇題1.若a=(1,2),b=(-3,0),(2a+b)∥(a-mb),則m=()A.-12C.2D.-2解析:選a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-m
2025-08-13 20:07
【摘要】......海伊教育學科教師輔導講義學員編號:年級:九年級課時數(shù):學員姓名:張鴻敬輔導科目:數(shù)學學科教師:高
2025-04-17 01:00
【摘要】平面向量練習題一.填空題。1.等于________.2.若向量a=(3,2),b=(0,-1),則向量2b-a的坐標是________.3.平面上有三個點A(1,3),B(2,2),C(7,x),若∠ABC=90°,則x的值為________.、b滿足|a|=1,|b|=,(a+b)⊥(2a-b),則向量a與b的夾角為________.5.已知向量a=(
2025-06-23 18:41
【摘要】平面向量1.向量的有關(guān)概念(1)平行向量:方向相同或____的非零向量;平行向量又叫____向量.規(guī)定:0與任一向量____.(2)相等向量:長度____且方向____的向量.(3)相反向量:長度____且方向____的向量.2.向量的線性運算3.共線向量定理向量a(a≠0)與b共線,當且僅當存在唯一一個實數(shù)λ,使__b=λa__.
【摘要】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數(shù)學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數(shù)學的各個分支和相關(guān)學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2024-11-15 03:33
【摘要】《平面向量與空間向量》專題向量及運算是現(xiàn)代數(shù)學重要標志之一,其引入給中學數(shù)學帶來了無限生機和活力,大大拓寬了解題的思路與方法。它以平面幾何、直角坐標系、三角函數(shù)等知識為基礎(chǔ),融數(shù)、形于一體,它已成為中學數(shù)學知識的一個交匯點。因此,向量是高考命題中“在知識網(wǎng)絡處設(shè)計試題”的很好載體。一、考試要求解讀1
2024-11-10 03:15
【摘要】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復習:1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2025-08-15 21:42
【摘要】新課標人教版課件系列《高中數(shù)學》必修42.3.3《平面向量的坐標運算》教學目的?(1)理解平面向量的坐標的概念;?(2)掌握平面向量的坐標運算;?(3)會根據(jù)向量的坐標,判斷向量是否共線.?教學重點:平面向量的坐標運算?教學難點:向量的坐標表示的理解及運算的準確性.
2024-11-11 06:00
【摘要】專題五:平面向量專題備考指導及考情分析:平面向量是高中數(shù)學的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學試題中的一道靚麗的風景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質(zhì)和運算法則,以及基本運算技能;(2)考查向
2025-08-16 02:00