【摘要】正弦定理和余弦定理的應用舉例考點梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、角度問題、計算面積問題、航海問題、物理問題等.2.實際問題中的常用角(1)仰角和俯角與目標線在同一鉛垂平面內(nèi)的水平視線和目標視線的夾角,目標視線在水平視線上方的角叫仰角,目標視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對于某正方向的水平角,
2025-06-24 02:22
【摘要】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2025-08-16 01:55
【摘要】正弦定理練習題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4D.3.在△ABC中,角
2025-06-28 04:46
【摘要】第一篇:數(shù)學:正弦定理、余弦定理的應用教案(蘇教版必修5) 您身邊的志愿填報指導專家 第5課時:§正弦定理、余弦定理的應用(1) 【三維目標】: 一、知識與技能 ,并能應用正弦定理、余弦...
2025-09-27 05:35
【摘要】高考正弦定理和余弦定理練習題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2.2.△ABC中,a=,b=,sinB=,則符合條件的三角形有( )
2025-06-26 04:58
【摘要】余弦定理復習回顧::2.正弦定理的作用:解三角形:(1)已知兩邊及其中一邊所對的角(2)已知兩角及一邊sinsinsinabcABC??探究:問題:在△ABC中,已知a、b,和角C,求c。(即用a、b、C表示c)
2025-07-18 09:05
【摘要】第一篇:2014屆高考數(shù)學: 一、選擇題 1.在△ABC中,若2cosBsinA=sinC,則△ABC一定是() A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形 解析...
2025-09-22 14:14
【摘要】余弦定理說課稿 (一)教材地位與作用 《余弦定理》是必修5第一章《解三角形》的第一節(jié)內(nèi)容,前面已經(jīng)學習了正弦定理以及必修4中的任意角、誘導公式以及恒等變換,為后面學習三角函數(shù)奠定了...
2025-04-13 12:00
【摘要】高一(下)數(shù)學(必修五)第一章解三角形正弦定理、余弦定理高考真題1、(06湖北卷)若的內(nèi)角滿足,則A.B.C.D.解:由sin2A=2sinAcosA0,可知A這銳角,所以sinA+cosA0,又,故選A2、(06安徽卷)如果的三個內(nèi)角的余弦值分別等于的三個內(nèi)角的正弦值,則A.和都
2025-04-17 04:29
【摘要】2013高考數(shù)學備考訓練-正弦定理和余弦定理應用舉例一、選擇題1.從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β之間的關系是( )A.αβ B.α=βC.α+β=90°D.α+β=180°答案 B2.如圖,在河岸AC測量河的寬度BC,圖中所標的數(shù)據(jù)a,b,c,α,β是可供測量的數(shù)據(jù).下面給出的四組數(shù)據(jù)中,
2025-06-07 23:38
【摘要】第二章函數(shù)與基本初等函數(shù).正弦定理、余弦定理自主預習案自主復習夯實基礎【雙基梳理】、余弦定理在△ABC中,若角A,B,C所對的邊分別是a,b,c,R為△ABC外接圓半徑,則定理正弦定理余弦定理內(nèi)容===2Ra2=;b2=;c2=變形(1)a=2Rsin
2025-06-07 19:44
【摘要】本文格式為Word版,下載可任意編輯 高中數(shù)學整理正弦定理和余弦定理的公式(大全) 高中數(shù)學整理正弦定理和余弦定理的公式(大全) 導語:愚昧從來沒有給人帶來幸福;幸福的根源在于知識。下面是為...
2025-04-04 12:02
【摘要】解三角形正弦定理(一)正弦定理:,(2)推論:正余弦定理的邊角互換功能①,,②,,③==④典型例題:1.在△ABC中,已知,則∠B等于()A.B.C.D.2.在△ABC中,已知,則這樣的三角形有_____1____個.3.在△ABC中,若,求的值.解 由條
2025-07-24 11:23
【摘要】《余弦定理》說課稿《余弦定理》說課稿各位老師大家好!今天我說課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時,今天我將就第1課時的余弦定理的證明與簡單應用進行說課。下面我分別從教材分析、教學目標的確定、教學方法的選擇和教學過程的設計這四個方面來闡述我對這節(jié)課的教學設想.一、教材分析本節(jié)內(nèi)容是江蘇教育出版社出版
2025-04-16 22:53
【摘要】國慶作業(yè)(一)正弦定理和余弦定理練習題一.選擇題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4
2025-06-28 05:30