【摘要】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)(組)與平面區(qū)域?qū)W(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】,能畫出二元一次不等式(組)所表示的圖形;2.感受由圖形解決數(shù)學(xué)問題的直觀性,從而體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想。【學(xué)習(xí)重點(diǎn)】正確畫二元一次不等式(組)所表示的平面區(qū)域。【學(xué)法指導(dǎo)】“數(shù)形結(jié)合法”來研究問題?!臼褂谜f明】
2024-11-19 15:46
【摘要】第5課時(shí)基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客.在正方形ABCD中有4個(gè)全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【摘要】【成才之路】2021年春高中數(shù)學(xué)第3章不等式2一元二次不等式第2課時(shí)一元二次不等式的應(yīng)用同步練習(xí)北師大版必修5一、選擇題1.不等式x-2x+1≤0的解集是()A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]
2024-12-05 06:37
【摘要】高中數(shù)學(xué)必修5一元二次不等式及其解法知識(shí)點(diǎn)總結(jié)一.一元二次不等式只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的不等式,稱為一元二次不等式(了解)二.一元二次不等式的解法 二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式二次函數(shù)的圖象一元二次方程的根有兩個(gè)相異實(shí)數(shù)根有兩個(gè)相等實(shí)數(shù)根沒有實(shí)數(shù)根一
2025-04-04 05:10
【摘要】課題:§一元二次不等式及其解法第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象
2024-12-02 10:14
【摘要】一元二次不等式的解法課件問題:(1)如何解一元二次方程(2)二次函數(shù)的圖象是什么曲線?(3)一元二次方程的解與二次函數(shù)的圖象有什么聯(lián)系?)0(02????acbxax)0(2?
2024-11-17 11:59
【摘要】§一元二次不等式及其解法(二)自主學(xué)習(xí)知識(shí)梳理1.解分式不等式的同解變形法則(1)f?x?g?x?0?________________;(2)f?x?g?x?≤0?________________;(3)f?x?g?x?≥a?f?x?-ag?x?g?x?≥0.2.處理不等式恒成立問題的
2024-11-19 23:20
【摘要】§一元二次不等式及其解法(一)自主學(xué)習(xí)知識(shí)梳理1.一元一次不等式一元一次不等式經(jīng)過變形,可以化成axb(a≠0)的形式.(1)若a0,解集為________________;(2)若a0,解集為________________.2.一元二次不等式一元二次不等
【摘要】一元二次不等式及其解法(第2課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系,進(jìn)一步熟悉一元二次不等式的解法...合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境題組一:再現(xiàn)型題組解答下列各題:(1)已知二次函數(shù)f(x)=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0的解是;一
2024-12-09 03:40
【摘要】一元二次不等式及其解法(第1課時(shí))學(xué)習(xí)目標(biāo)、一元二次不等式與二次函數(shù)的關(guān)系..合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:觀察不等式x2-4x0,它們有什么共同特征?怎樣給這樣的不等式命名?它的一般形式是什么?問題2:請嘗試求解不等式x2-4x0.
【摘要】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號(hào)各端加2,得-2x6?!嗖坏仁浇饧莧x|-2
2025-06-19 08:38
【摘要】第一篇:高中數(shù)學(xué)教學(xué)案例的反思----一元二次不等式及其解法 高中數(shù)學(xué)教學(xué)案例的反思 ————一元二次不等式及其解法 一、教學(xué)內(nèi)容分析 一元二次不等式的解法是高中重要的基本功,也是初中與高中的...
2024-11-04 12:50
【摘要】一元二次不等式學(xué)案學(xué)學(xué)習(xí)習(xí)目目標(biāo)標(biāo)1.掌握一元二次不等式的解法,會(huì)討論含參數(shù)的一元二次不等式的解集.2.會(huì)解決含參數(shù)的一元二次不等式恒成立問題.課課前前準(zhǔn)準(zhǔn)備備一、知識(shí)梳理1.一元二次方程、一元二次不等式、二次函數(shù)三者密切相關(guān),因而在一元二次不等式求解時(shí)要注意利用相應(yīng)二次函數(shù)的圖象及相應(yīng)二次方程的
2024-12-05 06:25
【摘要】含參一元二次不等式的解法溫縣第一高級(jí)中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對參數(shù)的分類討論以確定不等式的解,:①比較兩根大??;②判別式的符號(hào);③.一、根據(jù)二次不等式所對應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價(jià)于,所對應(yīng)方程的兩根是,.解:原不等式等價(jià)于,所對應(yīng)方程的兩根是或.當(dāng)時(shí),有,所以不等式的解集為或.當(dāng)時(shí),有,所
2025-06-25 16:54
【摘要】一元二次不等式的解法第二課時(shí)一、復(fù)習(xí)(1)化成標(biāo)準(zhǔn)形式ax2+bx+c0(a0)ax2+bx+c0)(2)判定△與0的關(guān)系,并求出方程ax2+bx+c=0的實(shí)根;
2024-11-18 12:16