【摘要】本文節(jié)選自《試題調(diào)研》數(shù)學第2輯的“熱點關注”,敬請品讀(版權所有,轉載請注明出處)。陜西???胡?波???從近幾年全國各省市新課標高考試題來看,解析幾何主要考查直線與圓、直線與圓錐曲線的基本知識等,在選擇題、填空題、解答題中都有出現(xiàn),、導數(shù)、方程、不等式、平面向量、平面幾何等知識,所考查的知識點較多,,怎樣在解題中
2025-06-17 23:38
【摘要】精品資源解析幾何練習題1、對于每個正自然數(shù)n拋物線與軸交于、兩點,以表示該兩點間的距離,則的值是(?。?A、 B、 C、 D、2、橢圓和雙曲線的公共焦點為F1、F2,P是兩曲線的一個交點,則的值是( ) A、 B、 C、 D、3、如右圖ABCD是直角梯形,AB=4,BC=3,AD=2,AD//BC,,一曲線M過C點且曲線上任意一點到A、B的距離之
2025-03-25 07:47
【摘要】解析幾何初步教學反思 解析幾何初步教學反思 直線與方程教學反思總結學習解析幾何知識,“解析法”思想始終貫穿在全章的每個知識點,同時“轉化、討論”思想也相映其中,無形中增添了數(shù)學的魅力以及優(yōu)化了...
2025-04-02 13:03
【摘要】精品資源第17-20課時解析幾何問題的題型與方法一.復習目標:1.能正確導出由一點和斜率確定的直線的點斜式方程;從直線的點斜式方程出發(fā)推導出直線方程的其他形式,斜截式、兩點式、截距式;能根據(jù)已知條件,熟練地選擇恰當?shù)姆匠绦问綄懗鲋本€的方程,熟練地進行直線方程的不同形式之間的轉化,能利用直線的方程來研究與直線有關的問題了.(組)表示的平面區(qū)域,知道線性規(guī)劃的意義,知道線性
2025-03-25 06:46
【摘要】三、解答題26.(江蘇18)如圖,在平面直角坐標系中,M、N分別是橢圓的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長交橢圓于點B,設直線PA的斜率為k(1)當直線PA平分線段MN,求k的值;(2)當k=2時,求點P到直線AB的距離d;(3)對任意k0,求證:PA⊥PB本小題主要考查橢圓的標準方程及幾何
2025-06-18 18:26
【摘要】職高數(shù)學《平面解析幾何》第一輪復習曲線與方程一、高考要求:理解曲線與方程的關系,會根據(jù)曲線的特征性質(zhì)選擇適當?shù)闹苯亲鴺讼登笄€方程,會求曲線的交點.二、知識要點:在平面直角坐標系中,如果曲線C與方程F(x,y)=0之間具有如下關系:(1)曲線C上的點都是方程F(x,
2025-06-07 18:19
【摘要】2016江西2015江西2014全國一2013江西 2007年天津
2025-04-17 12:34
【摘要】第40講直線的傾斜角與斜率、直線的方程第41講兩直線的位置關系第42講圓的方程第43講直線與圓、圓與圓的位置關系第44講橢圓第45講雙曲線第46講拋物線第47講圓錐曲線的熱點問題第八單元解析幾何
2025-08-07 11:15
【摘要】1幾何中的最值問題(隨堂測試)1.在△ABC中,∠BAC=120°,AB=AC=4,M、N兩點分別是邊AB、AC上的動點,將△AMN沿MN翻折,A點的對應點為A′,連接BA′,則BA′的最小值是_________.A'NMCBAOABCDMN
2025-08-01 20:48
【摘要】解析幾何中的基本公式1、兩點間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點:x,y對應項系數(shù)應相等。3、
2025-01-14 09:02
【摘要】WORD資料可編輯專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標.【答案】(1
2025-04-17 12:58
【摘要】明思教育明思教育好的習慣比努力更重要會當凌絕頂,一覽眾山小封笑笑同學個性化教學設計年級:高三教師:吳磊科目:數(shù)
2025-01-10 09:02
【摘要】1.直線方程(一)直線的位置關系1.已知集合,,若,則的值為____________________2.若直線與直線平行,則.3.已知m?{-1,0,1},n?{-1,1},若隨機選取m,n,則直線恰好不經(jīng)過第二象限的概率是.4.已知實數(shù),滿足約束條件則的最大值為.5.已知兩條直線的斜率分別為,設
2025-03-25 01:25
【摘要】1解析幾何·高考名題選萃一、選擇題1.以極坐標系中的點(1,1)為圓心,1為半徑的圓的方程是A=2cos()B=2sin()C=2cos(1)D=2sin(1).ρθ-π.ρθ-π.ρθ-.ρθ-442.過原點的直線與圓
2025-08-26 10:36
【摘要】......專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定
2025-04-17 13:05