【摘要】第一篇:構造函數(shù)證明數(shù)列不等式答案 構造函數(shù)證明數(shù)列不等式答案 : ln22+ln33+ln44+L+ ln33 nn 3- n 5n+66 (n?N).* 解析:先構造函數(shù)有l(wèi)...
2025-10-19 06:10
【摘要】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-03-25 02:44
【摘要】專題導數(shù)與不等式的解題技巧一.知識點基本初等函數(shù)的導數(shù)公式()常用函數(shù)的導數(shù)①()′=(為常數(shù));②()′=;③()′=;④′=;⑤()′=.()初等函數(shù)的導數(shù)公式①()′=;②()′=;③()′=;④()′=;⑤()′=;⑥()′=;⑦()′=..導數(shù)的運算法則()[()±()]′=;()[(
2025-03-24 05:51
【摘要】第一篇:利用導數(shù)證明不等式的常見題型經(jīng)典 利用導數(shù)證明不等式的常見題型及解題技巧 技巧精髓 1、利用導數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高...
2025-10-18 18:01
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【摘要】......數(shù)學數(shù)列與不等式的綜合問題突破策略【題1】 等比數(shù)列{an}的公比q>1,第17項的平方等于第24項,求使a1+a2+…+an>恒成立的正整數(shù)n的范圍.【題2】設數(shù)列{an}的前項和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.(1)設bn=Sn-3n,求數(shù)列{bn}的通項公式;(2)若an+1≥a
2025-03-25 02:51
【摘要】精品資源用均值不等式解題的注意點使用算術與幾何平均值不等式解最值問題時,一定要注意命題成立的條件,切實牢記“各數(shù)為正、正數(shù)之積或和為定值、等號成立的條件”這三點,以防解題失誤。本文就這三點略舉幾例,供同學們參考。例1.設的最值。誤解:由于是定值,所以用均值不等式求得。故y有最小值。辨析:這個解是錯誤的,其根源在于不注意正數(shù)的條件。
2025-03-25 06:05
【摘要】2020屆高考數(shù)學二輪復習系列課件18《數(shù)列數(shù)列通項與數(shù)列中的不等式》一、基礎知識.n有有關的命題:第一步:驗證初始狀態(tài),即“n=n0時命題成立”;第二步:假設推理,即“假設n=k(k≥n0)時命題成立,由此出發(fā),推得n=k+1時命題也成立”.:21,0???aaa:注
2024-11-11 02:53
【摘要】不等式與不等式組測試姓名__________學號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-11 04:58
【摘要】構造函數(shù)解不等式1.(2015全國2理科).設函數(shù)f’(x)是奇函數(shù)的導函數(shù),f(-1)=0,當時,,則使得成立的x的取值范圍是(A)(B)(C)(D)2若定義在上的函數(shù)是奇函數(shù),,當>0時,<0,恒成立,則不等式>0的解集ABCD.3定義在上的函數(shù)滿足:則不等式(其中為自然對數(shù)的底數(shù))的解集為(
2025-06-20 04:07
【摘要】.......初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>
2025-03-25 07:46
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2025-10-03 13:38
【摘要】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2025-10-25 17:10
【摘要】利用導數(shù)證明不等式的兩種通法吉林省長春市東北師范大學附屬實驗學校金鐘植岳海學利用導數(shù)證明不等式是高考中的一個熱點問題,利用導數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關的兩種通法用列舉的方式歸納和總結(jié)。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉(zhuǎn)化為證明(),進而構造輔助函數(shù),然后利用導數(shù)證明函數(shù)的單調(diào)性或
2025-06-20 04:22